
A Note on the Security of Code Memo

Ruben Wolf
Fraunhofer-Institute for Secure Information

Technology (SIT), Rheinstrasse 75,
64295 Darmstadt, Germany

ruben.wolf@sit.fraunhofer.de

Markus Schneider
Fraunhofer-Institute for Secure Information

Technology (SIT), Rheinstrasse 75,
64295 Darmstadt, Germany

markus.schneider@sit.fraunhofer.de

ABSTRACT
Today, secret codes such as passwords and PINs are the most
prevalent means for user authentication. Because of the
constantly growing number of required secret codes, com-
puter users are increasingly overtaxed. This leads to many
problems in daily use, e.g., costs due to forgotten passwords
in enterprises and security problems through bad password
practice. Storing secret codes on mobile phones seems to
be some kind of panacea to have secret codes always avail-
able since mobile phones are today’s permanent companions.
Code Memo is a software that is used on mobile phones to
store secret codes in a safe way; it is provided as firmware on
Sony Ericsson mobile phones. We assume that the intention
of the Code Memo designers was to provide an ideal cipher
system according to Shannon’s classification, i.e., it leaves
an adversary with uncertainty w.r.t. the correct decryption
key. In this paper we show how to break Code Memo. For
our attack, we have identified feedback channels in Code
Memo that can be exploited for distinguishing correct mas-
ter passwords from incorrect ones, and thereby, sieving can-
didates of master passwords. This weakness allows attackers
in a realistic setting to identify the correct master password,
and thus, to obtain all the stored passwords and PINs.

Categories and Subject Descriptors
E.3 [Data Encryption]: Code Breaking; D.4 [Operating

Systems]: Security and Protection

General Terms
Security

Keywords
Mobile applications, password management, security analy-
sis

1. INTRODUCTION
Today, many computer applications, systems or services,
e.g., Internet-based services or automated teller machines,

require user authentication. In this context, the applica-
tion of personal secrets, such as in the password mechanism,
is the most widespread way to authenticate users. A typi-
cal computer user utilizes several applications, services, and
systems that deploy user authentication based on the pass-
word mechanism. As a consequence, computer users have to
manage too many secret codes in practice [5, 7, 8]. Typical
Internet users may have an average number of 10–20 pass-
words. In this context, managing means, that they have to
choose secret codes according to application-specific rules,
memorize their codes, remember them correctly when they
are needed, potentially change them within certain time in-
tervals, and memorize their new codes again.

If users try to follow the hints for choosing good passwords
—adequately long strings not guessable by others and con-
sisting of a mix of lower and upper case letters, numbers and
special characters— as they are given by security experts,
they will hardly be successful in memorizing them. The re-
sult of following these hints is that users often forget their
secret codes, and thus cannot start desired applications or
access services. This has some negative impact especially
for enterprises whose employees cannot be productive while
they cannot start computer applications. Furthermore, en-
terprises have to deploy considerable helpdesk resources due
to forgotten passwords [3, 4]. In order to solve this conflict
between security and usability, users prevent forgetting their
passwords in their daily activities by choosing passwords
that can be remembered successfully, but can also be found
out much more easily by adversaries [2]. Thus, while doing
so, the security level typically decreases, which, in turn, may
cause higher risks for users and enterprises[1]. At this end,
users get in a situation that we call the password dilemma.

One possibility to get out of the password dilemma is to
use technical helpers, such as password tools on personal
computers or mobile phones. The application of password
management on mobile phones has the advantage that secret
codes are available in many situations, e.g., when being in
the office or at home, at the bank’s automated teller machine
and at the supermarket checkout. This is due to the fact that
mobile phones are today’s permanent companions of human
beings.

If secret codes are stored on mobile phones, then, of course,
they should be stored in a secure way in order to prevent
unauthorized persons from accessing them. Obviously, se-
cret codes are highly-sensitive information and a multitude

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MC'07 (Mobility'07), September 10-12, 2007, Singapore.
Copyright 2007 ACM 978-1-59593-819-0.….…$5.00

261

of them stored on a mobile phone is an attractive target for
attackers.

Code Memo is a software for storing secret codes on a mo-
bile phone. It is part of the Sony Ericsson mobile phone
firmware. Unfortunately, we do not have any information
about the cryptographic mechanisms that are applied by
Code Memo. However, we assume that Code Memo en-
crypts and decrypts secret codes in a symmetric manner
where the master password serves as encryption and decryp-
tion key. Obviously, Code Memo is a management tool for
secret codes that tries —presumably— to provide proper-
ties of an ideal cipher system according to the classification
given by Shannon in [6]. This means that given a known
ciphertext, there remains an uncertainty with respect to the
decryption key to the adversary if the plaintext is unknown
to the adversary. In other words, if an adversary tries to
decrypt the ciphertext by applying distinct keys, the de-
cryption result seems to be a reasonable plaintext to the
adversary for sufficiently many keys.

We have carried out a black-box analysis to Code Memo and
detected feedback information channels that can be used to
identify false decryption keys. Applying the same decryp-
tion key to other ciphertexts of the same user allows an
attacker to sieve decryption keys. This means that it is pos-
sible to recognize incorrect master passwords. Since the key
space of Code Memo is rather small, it is possible to uniquely
identify the user’s master password. As a consequence, it is
possible to obtain all secret codes of a user that uses Code
Memo.

In this paper, we show how an attacker can obtain a user’s
master password and all his secret codes. For this attack, it
is sufficient to exploit one single weakness of several weak-
nesses we have found in Code Memo when analyzing its
input/output behaviour. We explain the weakness that is
exploited in our attack. Furthermore, we give a proof of con-
cept on how to attack Code Memo by just applying freely
available standard software.

2. OVERVIEW ON CODE MEMO
The internal mechanisms applied by Code Memo are un-
known to the authors. However, it is possible to break Code
Memo and obtain a user’s master password and the stored
secret codes. Since the attack requires only an observation
of input and output parameters, we can restrict our overview
to the basic properties and the input / output behaviour of
Code Memo which is necessary to understand the attack.

A user when working with Code Memo has to select a 4-digit
number of his choice which serves as his master password
taken from the interval of integers [0000, . . . , 9999]. This is
shown in Figure 1. The master password in Code Memo is
called Passcode.

After typing in the master password, Code Memo displays a
checkword that serves as an indication to the user whether
he has entered his master password correctly. An example
is depicted in Figure 2 where the checkword has been set
to Lene. This checkword has been initially set-up by the
user. In case of a typo, the displayed checkword differs from
the user’s initially given checkword. If a typo has occured,

Figure 1: Entering the 4-digit master password

Figure 2: Displaying the checkword

the user receives another checkword string such as shown in
Figure 3.

In the next step, Code Memo displays the user’s list of ap-
plications and services for which he has stored his secret
codes, as shown in Figure 4. Note that each secret code
has to fulfill specific generation rules of the corresponding
application. For instance, credit card PINs usually consist
exclusively of 4-digit strings. Passwords can consist of char-
acters taken from the set of lower and upper case characters,
digits, and special characters.

When storing a PIN or a password, Code Memo recognizes
the character sets from which the characters contained in the
secret code are taken. Furthermore, Code Memo respects

Figure 3: Displaying the checkword in case of a typo

262 Proc. of the 4th Intl. Conf. on Mobile Technology, Applications and Systems (Mobility 2007)

Figure 4: Displaying of the user’s secret codes

Figure 5: Return of wrong codes upon entering a

wrong master password

the length of the given secret code. In case if an adversary
is entering master password candidates, Code Memo will
only display such results as seemingly correct secret codes
that have the same length as the original secret code en-
tered by the user and contain exclusively characters of the
same sets as they are contained in the original secret code.
The intention of this property is, presumably, to confuse an
attacker by leaving him behind with uncertainty to decide
whether he has found the correct master password or not.

This means, e.g., if a user stores his 4-digit credit card PIN
in Code Memo, then upon giving in a wrong master pass-
word Code Memo returns a wrong PIN code also consisting
of a 4-digit number. In the case of a stored password con-
taining lower and upper case characters, digits, and special
characters, the codes returned by Code Memo upon enter-
ing a wrong master password only contain elements from
the same character sets. This property is depicted in Fig-
ure 5. Figure 5 shows the codes returned by Code Memo
upon entering a wrong master password. Note that the re-
turned codes correspond to the correct secret codes shown
in Figure 4.

3. IDEA FOR ATTACK
3.1 Relevant Weakness
Let m be the user’s master password. The weakness in Code
Memo, that we have identified and that can be exploited
to uniquely identify the user’s master password m and to
obtain all secret codes, is based on a property according
to which Code Memo deals with special characters. The

crucial point is that Code Memo deals with different input
and output sets for special characters.

Let S be the input set for special characters. The output
set for special characters is denoted by S′. This means when
storing passwords in Code Memo, then users can exclusively
enter characters that are contained in S. The special charac-
ters that are returned by Code Memo are taken from the set
S′. As we have detected, it holds that S �= S′ and S ⊂ S′.
We introduce the difference set D = S′/S, or in other words,
D is the complement to S with respect to S′ = S ∪D where
S ∩ D = ∅. The elements of S and D are shown in the
Tables 1 and 2.1 Note that the number of elements in these
sets is |S| = 15 and |D| = 17.

Whenever, upon entering a candidate x for a master pass-
word, Code Memo returns a password candidate y that con-
tains at least one character c for which c ∈ D holds, it is
immediately clear that x �= m. This can be used by at-
tackers to reduce the uncertainty whether the entered mas-
ter password was correct or not. Considering one password
candidate y(x) upon entering x, there may remain some un-
certainty if y(x) contains no character c which is an element
of D. However, this uncertainty can be reduced, or elimi-
nated, if Code Memo still stores other passwords that con-
tain special characters. The reduction, or elimination, of
uncertainty is achieved through sieving as it is explained in
Section 3.2.

In our opinion, this weakness is relevant for practice since
users apply Code Memo to store their passwords and users
are motivated by security experts —and also enforced by
several applications— to choose passwords that contain spe-
cial characters. Note that the weakness which is based on
the way how Code Memo deals with special characters can
even be exploited to obtain a user’s PIN which exclusively
consists of digits. This can be achieved by sieving as shown
in the following.

3.2 Sieving Master Passwords
Let n be the number of passwords pw1, . . . , pwn contain-
ing special characters that are stored in Code Memo. For
securing these passwords, the user has applied the master
password m. An attacker with the intention to get a user’s
master password m and all his other secret codes enters mas-
ter password candidates xi for i = 0, . . . , 9999 and observes
the returned results y1(xi), . . . , yn(xi).

For each single password target pwj with j ∈ {1, . . . , n},
the attacker calculates sets Xj containing master password
candidates according to

Xj = {xi | yj(xi) contains no character c ∈ D} (1)

1At the first glance, it seems that the character is a mem-
ber of S. Note that there is a special character that can
also be entered. However, upon input of this character a
line break is inserted, i.e., is not displayed as a symbol. If
password candidates are returned as result to a wrong mas-
ter password, Code Memo displays as a symbol. This can
be easily distinguished from a line break. Thus, we have to
assign the symbol to the set D.

Proc. of the 4th Intl. Conf. on Mobile Technology, Applications and Systems (Mobility 2007) 263

Table 1: Input set for special characters S

set S
elements . , - ? ! ’ @ : ; / () * + #

Table 2: Difference set D

set D
elements % < & ¿ > = ” ¡

If all sets X1, . . . , Xn are available, the attacker can reduce,
or eliminate, uncertainty by sieving:

X =

n\
j=1

Xj (2)

Obviously, if the attacker has entered all values xi, the set X
is not empty. In the best case for the attacker, we have |X| =
1. Then, the element contained in X is identical to the user’s
master password and the attacker can immediately calculate
all secret codes of the user. In typical realistic cases, X
contains only one or very few elements. If |X| > 1, the
attacker has some proposals for master passwords. However,
in a small set of master password candidates the correct
master password is quickly identified by calculating secret
codes with these candidates and checking which password or
PIN is correct. Typically, each service or application allows
more than one attempt for giving in a secret code.

3.3 Probabilistic Assessment
In the following, it is our intention to analyze the extent of
the reduction of uncertainty when an attacker enters mas-
ter passwords in a brute force manner. This work is based
on a simple probabilistic approach, that we have assumed
for modeling Code Memo’s properties when returning codes
upon input of a false master password. Since we do not
know the details for the calculation of the codes, our model
is quite idealized. However, for typical cryptosystems the
idealized model should fit well.

Based on our model, we show that the attacker’s uncer-
tainty with respect to master passwords can be dramatically
reduced, even in cases that are very relevant for practice.
There are even realistic cases in which the uncertainty can
be completely eliminated.

Consider an attacker that enters master password candi-
dates x. Since Code Memo works in a deterministic way, an
attacker has to test each master password candidate x only
once for trying to find a user’s correct master password m.
In a brute force attack, the user enters all potential mas-
ter password candidates from 0000 to 9999. Among these,
there are, obviously, the user’s correct master password and
9999 false candidates. Every time when a user enters a false
master password candidate and passwords containing spe-
cial characters are returned, they can either contain elements
from set D with a certain probability or not.

Let Z be a discrete random variable that represents the num-
ber of times the results returned by Code Memo contain at

least one element from D upon entering all false master pass-
word candidates. Furthermore, let λ be the probability that
the passwords calculated by Code Memo contain at least
one element of D upon entering a false master password.
Testing false master passwords and verifying whether they
return elements of D can be modeled as Bernoulli trial with
λ as success probability and 1 − λ as probability for failure,
i.e., in this case returned passwords for a false master pass-
word candidate consist exclusively of elements taken from S.
Modeling our experiment as Bernoulli trial is based on the
assumption of statistical independence for repeated trials.

If the experiment is repeated M times for all false master
passwords, i.e., M = 9999 times, then we obtain the expec-
tation E[Z] and the variance Var[Z] as

E[Z] = M · λ, (3)

Var[Z] = M · λ · (1 − λ), (4)

which are a well-known facts.

Now, let us have a look at λ. Obviously, λ depends on the
number N of special characters that are displayed in total
if an attacker enters a false master password. This depends
on the number n of passwords a user has stored with Code
Memo and the number of special characters contained in
a decryption result for yi. Let ν be the mean number of
special characters contained in such a password candidate
yi. Then, we have N = n · ν. This yields the probability

λ = 1 −

„
|S|

|S| + |D|

«N

= 1 −

„
15

32

«N

= 1 −

„
15

32

«n·ν

(5)

Note that Equation (5) is based on the assumption that
also the selection of N special characters can be modeled
as a Bernoulli trial. Furthermore, we have to emphasize
that Equation (5) exclusively holds for the 9999 false master
password candidates. The correct master password never
leads to results that contain elements of D.

Now, we have all required parts to have a closer look at the
values of E[Z] and Var[Z] for some relevant cases. Therefore,
we calculate E[Z] and Var[Z] for some pairs (n, ν). These
are given in the Tables 3 and 4.

What do these values in the Tables 3 and 4 mean? In the

264 Proc. of the 4th Intl. Conf. on Mobile Technology, Applications and Systems (Mobility 2007)

Table 3: Expectation E[Z]

E[Z] n
1 2 3 4 5 6 7

1 5311.96 7801.95 8969.13 9516.25 9772.71 9892.92 9949.27
2 7801.95 9516.25 9892.92 9975.69 9993.87 9997.87 9998.75

ν 3 8969.13 9892.92 9988.07 9997.87 9998.88 9998.98 9998.99
4 9516.25 9975.69 9997.87 9998.94 9998.99 9998.99 9998.99
5 9772.71 9993.87 9998.88 9998.99 9998.99 9998.99 9998.99

Table 4: Variance Var[Z]

Var[Z] n
1 2 3 4 5 6 7

1 2489.98 1714.29 923.79 459.44 221.16 104.94 49.47
2 1714.29 459.44 104.94 23.25 5.11 1.12 0.24

ν 3 923.79 104.94 10.91 1.12 0.11 0.01 0.001
4 459.44 23.25 1.12 0.05 0.002 0.0001 6.1E-6
5 221.16 5.11 0.11 0.002 5.9E-5 1.3E-6 3.0E-8

following, we give an interpretation of the results shown in
these tables. Assume an attacker steals, or finds, a mobile
phone where Code Memo has been used to store 4 pass-
words and the decryption results for these passwords con-
tain 3 special characters on average. If the attacker carries
out a brute force attack —potentially by using an appara-
tus as explained in Section 4 or any other more efficient
approach— and enters all master password candidates from
0000 to 9999, then the attacker will get aware by observing
Code Memo’s results that averagely 9997.87 master pass-
word candidates from the 9999 false master password can-
didates can be recognized as false master passwords. So,
there remains only an uncertainty of 1.13 master password
candidates resulting from the set of false master passwords
and the correct master password. This means, the after
testing all master password candidates from 0000 to 9999,
the attacker has an uncertainty of 2.13 master passwords,
on average. This means that with probability of nearly 0.5
the attacker’s first random choice from the sieved master
passwords yields to the correct master password. Even if
the first random choice is wrong, the attacker can take the
next choice from its set of typically 2 or 3 sieved candidates.
Note that the variance of Z is this small that the sieved set
should not contain more candidates for master passwords in
practice.

In a case in which Code Memo has been used to store 6
passwords and the decryption results contain averagely 3
special characters, an average of 9998.98 master password
candidates from the 9999 false master password candidates
can be immediately recognized. This means that it is very
likely that sieving leads immediately to a single result, which
is the correct master password. In this case, the attacker has
immediately and completely eliminated all uncertainty.

The idealized model is useful as a theortical basis to see
how much data, i.e., passwords, are necessary to reduce, or
to eliminate uncertainty with respect to the correct master
password. For setting up an attack scenario, however, there
is no possibility to apply the expectation and variance as
given in Equations (3) and (4) in a constructive way. The

reason therefore is that there is no possibility in Code Memo
—to our knowledge, at least— to control the average number
of special characters that are returned upon entering false
master passwords provided that this number is larger zero.
Furthermore, the average number of special characters that
are returned upon entering false master passwords for all in-
puts containing more than one special character is unknown
to us. However, it is not the goal of this work to find out the
average number ν of special characters in decryption results
calculated by Code Memo. Nevertheless, having such values
as given in Tables 3 and 4 is useful. They show how severe
the detected weakness is for some reasonable values n and
ν.

4. PROOF OF CONCEPT
In this section, we show how to attack Code Memo with
standard software. Here, it was not our intention to optimize
the attack. Instead, we want to show how easily the attack
can be carried out by just applying standard tools, i.e., in
principle, any normal user is able to carry out the attack. Of
course, there is also the possibility to speed-up the attack by
applying more specialized software tools. However, it is not
our aim to explain how to make the attack more efficient.
Nevertheless, experts having access to specialized software
tools are able to speed-up the attack dramatically.

In order to show that our attack works successfully in reality,
we have used an experimental setup as shown in Figure 6.
Furthermore, we have stored some passwords in Code Memo
under application of a master password selected by our own.
The proof of concept illustrates how easily this master pass-
word can be found by attackers.

For our proof of concept, we require three devices as shown
in Figure 6: a mobile phone (we have used a Sony Ericsson
K800i), a personal computer, and a webcam. The webcam
has been applied to capture the decryption results displayed
by the mobile phone. The personal computer is used for
driving the mobile phone, i.e., to enter master passwords
candidates into Code Memo and to process the captured
decryption results. Furthermore, the webcam is controlled

Proc. of the 4th Intl. Conf. on Mobile Technology, Applications and Systems (Mobility 2007) 265

Figure 6: A simple architecture for the attack based

on standard low cost components

by the personal computer via a TWAIN interface. For tak-
ing and storing pictures we have used the software IrfanView

Version 3.99.2 Driving the mobile phone is achieved by ap-
plying floAt’s Mobile Agent 2.1 Beta 4.3 The whole process,
i.e., entering master passwords and capturing decryption re-
sults, is controlled by using AutoHotKey Version 1.0.46.10.4

The pictures can then be postprocessed by using OCR soft-
ware in order to identify special characters from set D.

In order to demonstrate the proof of concept, we have se-
lected a random password setting; the passwords are selected
according to security recommendations including lower and
upper case letters, numbers, and special characters. We have
to mention that there was no possibility for us to control the
average number of special characters that are generated by
Code Memo upon entering a wrong master password. The
result calculated by Code Memo contains special characters
with high probability if the password to be stored contains
one or more special characters. In this case, the longer the
password, the higher is this probability. Note that it was not
the objective of this work to analyze the statistic output be-
haviour of Code Memo with respect to average numbers of
special characters.

To show a case in which an attacker can eliminate all uncer-
tainty with respect to the master password, we have decided
to select a sample scenario with 7 passwords each consisting
of 12 characters. Furthermore, the passwords are selected
in such a way that they cannot be found in a typical dictio-
nary attack and each password contained exactly 3 special
characters. We emphasize that this should not be confused
with the average number of special characters calculated by
Code Memo upon entering master password candidates.

In our opinion, assuming a user that stores 7 passwords
is not an exceptionel case. Today, a normal Internet user
should have more than 7 passwords. The sample scenario is
shown in Table 5. Furthermore, we have selected the PIN
code 9876 as master password.

The attacker’s first goal is to find the master password, and
then, to get all other user secrets. When excuting the attack
as described above with our sample scenario by entering
all master password candidates 0000, . . . , 9999 in a brute
force manner, it is possible to uniquely identify the correct
master password, and thereby, to obtain all passwords of the

2See http://www.irfanview.com/.
3See http://fma.sourceforge.net/.
4See http://www.autohotkey.com/.

Table 5: Sample scenario

service password

Email w!A2z5:QX+7e
Auction kF(6-3ZgK1.T
Banking #?@9sKDaLjv2
Windows 7Go;O4’s60M!
News Ed1Nb8FwG)/-
Railway A0z@+*3ijBX9
Bookstore e@:/ETWkv2h1

sample scenario user. For this sample scenario, each entered
master password candidate leads to at least one decryption
result that contains an element from set D, i.e., an attacker
can completely eliminate his uncertainty with respect to the
correct master password. The only solution for the master
password the attacker obtains trough sieving is 9876.

If we omit the last entry (the Bookstore password) in our
sample scenario and assume the other 6 passwords as given
in the table above, then the attacker would obtain 4 mas-
ter passwords candidates, i.e., 1127, 3629, 5378, and 9876.
However, even if there is still some little uncertainty for the
attacker, this can be easily eliminated in a second step by
calculating all passwords for these master password candi-
dates. Then, after at most three additional steps the correct
master password and all other user passwords can be iden-
tified. Once the attacker has identified the correct master
password, he can also obtain all other secrets that do not
contain special characters, e.g., credit card PINs if stored
together with passwords.

This proof of concept shows how easily an attacker can ob-
tain a user’s secrets if they are stored with Code Memo.
Note that the software to execute this attack is no special-
ized hacking software. Furthermore, the software does not
require in-depth security knowledge, which means that it
can be carried out by any normal person.

5. CONCLUSION
We have identified a weakness in Code Memo that allows an
attacker to obtain a user’s master password and all his secret
codes that are stored with Code Memo. The attack can be
carried out under realistic conditions that are relevant in
practice. In our opinion, this security weakness may have
dramatic impact for the person who uses Code Memo, so
that we cannot recommend using Code Memo anymore.

Since we detected the Code Memo weakness based on a
black-box analysis, i.e., we do not know the internals of Code
Memo, it is difficult —and potentially not effective— to give
recommendations on how to repair Code Memo.

6. REFERENCES
[1] P. Ducklin. Simple advice for more sensible password

use. http://www.sophos.com, Apr. 2006.

[2] W. Harrison. Passwords and Passion. IEEE Software,
23(4), July/August 2006.

[3] G. Hayday. It users in password hell. ZDNet UK News,
Dec. 2002.

[4] G. Hayday. Counting the costs of forgotten passwords.

266 Proc. of the 4th Intl. Conf. on Mobile Technology, Applications and Systems (Mobility 2007)

ZDNet UK News, Jan. 2003.

[5] SafeNet. 2004 Annual Password Survey Results.
SafeNet (Inc.), http://www.safenet-inc.com, 2004.

[6] C. Shannon. Communication Theory of Secrecy
Systems. Bell System Technical Journal, 28(4), 1949.

[7] Sophos. Employee password choices put business at
risk. http://www.sophos.com, Apr. 2006.

[8] J. VanAuken. Review: Password Management: Grief
Relief. Information Week,
http://www.informationweek.com, Jan. 2006.

Proc. of the 4th Intl. Conf. on Mobile Technology, Applications and Systems (Mobility 2007) 267

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

