
F R A U N H O F E R I N S T I T U T E F O R S E C U R E I N F O R M AT I O N T E C H N O L O G Y

S I T T E C H N I C A L R E P O R T S

Trends and Strategy Report

Development of Secure Software
with Security By Design

Michael Waidner, Michael Backes, Jörn Müller-Quade

Competence Centers for Cyber Security

C ISPA
Center for IT -Security, Privacy
and Accountability

F R A U N H O F E R V E R L A G

Development of Secure Software with Security
by Design

Michael Waidner (Hrsg.), Michael Backes (Hrsg.), Jörn Müller-Quade (Hrsg.),
Eric Bodden, Markus Schneider, Michael Kreutzer, Mira Mezini, Christian
Hammer, Andreas Zeller, Dirk Achenbach, Matthias Huber, Daniel
Kraschewski

SIT Technical Reports
SIT-TR-2014-03

July 2014

Fraunhofer Institute for Secure
Information Technology SIT
Rheinstraße 75
64295 Darmstadt
Germany

This trends and strategy report has
been funded by the German Federal
Ministry of Education and Research.

FRAUNHOFER VERLAG

IMPRINT

Contact
Fraunhofer Institute for
Secure Information Technology SIT
Rheinstraÿe 75
64295 Darmstadt
Germany
Phone +49 (0) 6151 869-213
Fax +49 (0) 6151 869-224
E-Mail info@sit.fraunhofer.de
URL www.sit.fraunhofer.de

Ed. Michael Waidner
SIT Technical Reports
SIT-TR-2014-03: Development of Secure Software with Security by Design
Michael Waidner (Hrsg.), Michael Backes (Hrsg.), Jörn Müller-Quade (Hrsg.), Eric Bodden, Markus
Schneider, Michael Kreutzer, Mira Mezini, Christian Hammer, Andreas Zeller, Dirk Achenbach,
Matthias Huber, Daniel Kraschewski
ISBN 978-3-8396-0768-8
ISSN 2192-8169

Printing:
Mediendienstleistungen des
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Printed on acid-free and chlorine-free bleached paper.

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying, record-
ing or otherwise, without the written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. The quotation of those designations in whatever way does not imply the conclusion
that the use of those designations is legal without the consent of the owner of the trademark.

c© by FRAUNHOFER VERLAG, 2014
Fraunhofer Information-Centre for Regional Planning and Building Construction IRB
P.O. Box 80 04 69, D-70504 Stuttgart
Nobelstrasse 12, D-70569 Stuttgart
Phone +49 (0) 7 11/9 70-25 00
Fax +49 (0) 7 11/9 70-25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Development of Secure Software with Security by
Design

Michael Waidner (Hrsg.), Michael Backes (Hrsg.), Jörn Müller-Quade (Hrsg.),

Eric Bodden, Markus Schneider, Michael Kreutzer, Mira Mezini,Christian Hammer,

Andreas Zeller, Dirk Achenbach, Matthias Huber, Daniel Kraschewski

This trends and strategy report argues that the development and integration of secure
software has to follow the Security by Design principle and defines respective challenges for
a practice oriented research agenda. Software is the most important driver for innovations in
many industries today and will remain so in the future. Many vulnerabilities and attacks are
due to security weaknesses in application software. During application software development
or integration, security issues are either taken into account insufficiently or not at all, which
constantly leads to new openings for attacks. Besides functionality, software security is
becoming more important to users and manufacturers. Using new practical methods and
systematically observing security processes will help software managers and integrators
to avoid security vulnerabilities. Development and security processes improvement offers
manufacturers the opportunity to reduce software costs and development time whilst gaining
enhanced security features. For companies this step is very important strategically and
highly relevant for their medium to long-term competitiveness. Since software products
and their development processes can be very complex, it is not clear to manufacturers how
they can profit from and economically realize Security by Design and the security processes
necessary for it. It is the purpose of applied research to address the challenges within this
context, and to master them and transfer realizable solutions into practical use.

Key Words: Security by Design, Secure Engineering, Software Engineering, Security Devel-
opment Lifecycle, Application Security, Supply Chain, Software Development

SIT Technical Reports SIT-TR-2014-03

IV · M. Waidner et al.

Michael Waidner (Hrsg.)
EC SPRIDE, TU Darmstadt,
Fraunhofer-Institut für Sichere Informationstechnologie (SIT)
Fraunhofer SIT, Rheinstraÿe 75, 64295 Darmstadt
www.sit.fraunhofer.de, www.ec-spride.de, www.informatik.tu-darmstadt.de

Michael Backes (Hrsg.)
CISPA, Saarland University
Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken
www.cs.uni-saarland.de, www.cispa-security.de

Jörn Müller-Quade (Hrsg.)
KASTEL, Karlsruher Institut für Technologie (KIT)
Karlsruher Institut für Technologie, Kaiserstraÿe 12, 76131 Karlsruhe
www.kit.edu, www.kastel.kit.edu

Eric Bodden, Markus Schneider
EC SPRIDE, Fraunhofer SIT
Fraunhofer SIT, Rheinstraÿe 75, 64295 Darmstadt
www.ec-spride.de, www.sit.fraunhofer.de

Michael Kreutzer, Mira Mezini
EC SPRIDE, TU Darmstadt
EC SPRIDE, Mornewegstraÿe 30, 64293 Darmstadt
www.ec-spride.de, www.informatik.tu-darmstadt.de

Christian Hammer, Andreas Zeller
CISPA, Universität des Saarlandes
Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken
www.cispa-security.de, www.cs.uni-saarland.de

Dirk Achenbach, Matthias Huber, Daniel Kraschewski
KASTEL, Karlsruher Institut für Technologie (KIT)
Karlsruher Institut für Technologie, Kaiserstraÿe 12, 76131 Karlsruhe
www.kastel.kit.edu, www.kit.edu

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · V

CONTENTS

1 The Changing Face of Software Security and Software Development
1

2 The Significance of Security By Design 4
2.1 The Term Security by Design . 4
2.2 The significance for Society . 4
2.3 The Significance for Software Users 6
2.4 Significance for Software Manufacturers 7

3 Software Security through Automation and
Reduction Human Factors 12

3.1 Challenge: Security Oriented Programming Languages 13
3.2 Challenge: Modeling Risks, Threats and Maturity Levels 14
3.3 Challenge: Development Models for

Secure Software Lifecycles . 16
3.4 Challenge: Verification and Testing 17
3.5 Challenge: The Sustainably Secure Integration of Cryptographic Prim-

itives and Protocols . 19
3.6 Challenge: Detecting Intentionally Introduced and Provenance Tracking 22
3.7 Challenge: Common Language . 23

4 Security by Design in Distributed Development
and Integration 25

4.1 Challenge: Standardizing Security Processes Over The Complete Sup-
ply Chain . 27

4.2 Challenge: Governance Framework in Distributed Development and
Integration . 30

4.3 Challenge: Security Processes for Software Product Lines 32
4.4 Challenge: Security when Integrating Large Systems 35
4.5 Challenge: Assurance through Security Processes 38

5 Security by Design for Legacy Software 42
5.1 Challenge: Statements about the Security of Legacy Software 42
5.2 Challenge: Transfer Legacy Software into the Security Lifecycle . . . 43
5.3 Challenge: Increase the Security of Legacy Software 44

6 The Future with Security by Design 46

7 Appendix: Bibliography 47

Acknowledgements 57

SIT Technical Reports SIT-TR-2014-03

VI · M. Waidner et al.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · VII

Greeting by Karl-Heinz Streibich

Software AG, Chief Executive O�cer

Dear Ladies and Gentlemen,
Esteemed Colleagues from Science and Industry,

Today the digital world is generating every two days as much data as has been
in use in the time between the beginning of human civilization and the year 2003.
Billions of mobile end devices are being used. We cannot fathom our everyday life
without them anymore: users document where they are, who they are talking to,
what moves them. The classic mobile phone has turned into a source of data.
For the first time we are equipped with the technical possibility to survey our en-

vironment, our daily routine and our life in realtime. In the global software industry
this is a unique constellation, because four technological megatrends meet at the
same time:

Time to get social

The cloud lifts off

$241,000,000,000

Personal cloud
will replace computers

By 2020 the cloud
market will
hit $241 b.

Up from
$40.7 b.
in 2012

$40.7 b.

2012

$241 b.

2020

98%
of companies
plan to increase
social media
investments

19.2%
That‘s up by
19.2% from 2011

1.43 b.
Number of social
media users in 2012

Big data is king

Mobile takes over

5,980,000,000
Total numer of mobile
subscriptions worldwide

Banking:
Over 50% of
adults use
mobile money

To create 5 exabytes
of data, it takes …

before
2003

2011

2013

1,000+ years
2 days
10 minutes

Current bits
of information =
of stars
in our universe

• Mobile � the increasing mobile communication and the mobile Internet use.

• Cloud Computing � the transfer of data and applications into the internet.

• Social Collaboration � the increased usage of social networks.

• Big Data � the processing and analysis of vast data amounts in realtime.

Software has become the fundamental material and innovation driver in nearly all
industries. Processes, products and production methods are being connected over
the Internet and can be augmented with digital information and interlinked in a
whole new manner. With this increasing interconnection the customer's need for
secure, digital solutions over the entire value chain grows as well. Today Software

SIT Technical Reports SIT-TR-2014-03

VIII · M. Waidner et al.

AG is leading in 15 market sectors with its product families Adabas and Natural,
webMethods, ARIS and Terracotta. We offer our customers the qualitatively best
solutions for digitalizing their enterprise. Our leading market position is the result
of decades of research and developmental work, even beyond company boundaries,
and the foundation for the strategic partnership with the European Center for Se-
curity and Privacy by Design (EC SPRIDE). This partnership allows Software AG
to benefit from a scientific institute's high-level in the area of IT security and inte-
grate the results into its own software development process. The focus of the joint
activities is on the Laboratory for Secure Engineering. This Secure Engineering Lab
forms the organizational framework for the joint research activities, the expansion of
our development team and the continued optimization of our joint development pro-
cesses based on the latest research results. The software production methods have
to adapt to the new requirements and conditions that are characterized more by
the decentralization and distribution of development works (worldwide distributed
development teams, the integration of third party and open source components and
cross-company processes). Security needs to be included into the development pro-
cess from the very beginning (Security by Design), which makes it a must that IT
tools will have to be modified and augmented. EC SPRIDE and Software AG work
together in these areas to put the latest research findings into practice, given the
respective specific conditions.
The goal is to intermesh industry and science, because in the future innovative

products and services are not conceivable anymore without secure software. The
German industry's competitiveness will be determined by its capability to create
software based products and services of utmost quality. Software competency will
be the prerequisite for Germany to maintain its leading position in engineering and
further expand its position as one of the leading export nations. A dynamic and
successful German software industry gives an important impetus to all types of eco-
nomic sectors and thus for the competitiveness of the German national economy.
This is why the cooperation with an active and dedicated research community such
as EC SPRIDE is of important concern to us.

Yours,

Karl-Heinz Streibich - Vorstandsvorsitzender der Software AG

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 1

1. THE CHANGING FACE OF SOFTWARE SECURITY AND SOFTWARE
DEVELOPMENT

These days most innovations are based on information technology. This is true for
IT sector innovations, as well as for other sectors such as energy, finances, health,
trade, logistics, media, production, environment and tra�c. Information technology,
which is frequently implemented as software, plays a prominent role in this.
Nowadays companies and organizations are employing application software in im-

portant business processes that are frequently vital for the business' success. Such
application software features special functions needed for the most varied purposes.
Today application software development considers these desired functions almost
exclusively. The developers are experts in their respective application domains.
During the developmental process, security is taken into consideration either only
marginally or not at all. Inevitably, this leads to security vulnerabilities in the appli-
cation software. Consequentially hackers repeatedly try to gain access to data and
systems via these weaknesses in security in order to profit at the expense of others
[BKA12; BKA11]. Besides the functionality of the software itself, software security
is becoming more important to users and manufacturers. Security vulnerabilities in
application software constitute a big risk for organizations and enterprises and they
are now understood to be the most dangerous source of threats (see for example
figure 1). For users, the realistic concern of financial losses puts the security issue
increasingly at the center. Software application manufacturers are called upon to
react accordingly and to improve the security of their products.
In the past manufacturers tried to externalize the security tasks. This was done

with firewalls, wrappers, intrusion detection or malware protection. If application
software has security vulnerabilities, it may not always be possible to remedy these
weaknesses via externally added security components without a loss in functionality.
This currently widespread software development practice leads to constant detection
of vulnerabilities, which then have to be dealt with as fast as possible with elaborate
and expensive patch cycles.
Since the causes for security vulnerabilities are understood better in practice now

than they were a few years ago, awareness is rising that software security should be
factored in more extensively during development and integration . The threat and
risk situation will not progress substantially unless application software security is
improved.
To improve application software security it is urgently required that security is

factored in from the very beginning of software development, i.e. during the design
phase, and tracked throughout the full software development lifecycle (see for ex-
ample Security Development Lifecycle (SDL) of Microsoft [Mic10]). Manufacturers
anticipate from this approach both products with better security features and a re-
duction in manufacturing costs [For11a; Abe10]. The earlier such a security process

SIT Technical Reports SIT-TR-2014-03

2 · M. Waidner et al.

Threat and Vulnerability Concerns
(Top and High Concerns)

Application Vulnerabilities

Malware

Mobile Devices

Internal Employees

Hackers

Cloud-based Services

Cyber Terrorism

Contractors

Hacktivists
Trusted Third Parties

Organized Crime

State Sponsored Acts

69%

67%

66%

56%
56%

49%
44%

43%

39%

36%

36%

43%

Figure 1: According to a study by Frost & Sullivan, (ISC)2 and Booz, Allen, Hamilton represent
security vulnerabilities in application software the biggest threat. (source: [FIB13])

detects vulnerabilities during the development, the lower the costs for a remedy:
�Implementing security measures after the fact is significantly more expensive and
usually offers less protection than security that was integrated into the system de-
velopment process or into the product selection process from the very beginning.
Security should therefore be an integrated component of an IT system's or prod-
uct's entire lifecycle.� [BSI06]
This clearly demonstrates the strategic dimension of security processes. If soft-

ware manufacturers adapt and improve their development and security processes
accordingly they can improve their products' security as well as their competitive-
ness. This requires a paradigm shift so that security processes can be realized in an
economical manner and where the individual enterprises are willing to fund the ini-
tial investments for this change. The adoption of security processes is an important
aspect in order for software manufacturers to prevail against competition.
Software and software development processes can be very complex, especially with

larger projects. For example, one single modern software end product may contain
software components from many different manufacturers, for which the current se-
curity processes are insu�cient. For economic reasons, and to save time, compo-
nents that have been previously developed under different criteria may be integrated
(legacy). The complexity of software development and the human factor in devel-
opment repeatedly brings about errors and thus weaknesses. These problems are
mitigated by using supporting tools.
In view of the need for secure software on one hand and the vulnerability of in-

dustry and society on the other, the security processes during software development
must undergo extreme changes. However, during software manufacture and inte-
gration, transformation processes will be successful only if they can be designed

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 3

evolutionarily. It must be kept in mind that manufacturers will not be able to resort
to other developer resources ad hoc. In industrial software development it is there-
fore very important to design new tools which will have to be integrated into existing
developmental environments, and which support current developers, whose security
expertise is less pronounced, in preventing security vulnerabilities. It is expected
that industrial software development and the accompanying security processes will
evolve immensely in the coming years. In the end it is expected that software secu-
rity will be taken into consideration during the design phase and that the security
will be improved systematically and methodically over the software lifecycle. This
expectation is characterized by various forecasts describing the ideal development of
secure software from differing perspectives. Research has to address and overcome
a number of challenges in order for these ideas to become reality. In the next step,
the results then have to be transferred into real software development.
This trends and strategy report describes the ideal of future secure software de-

velopment and outlines the challenges which will determine the practice oriented
research agenda in the years to come.

SIT Technical Reports SIT-TR-2014-03

4 · M. Waidner et al.

2. THE SIGNIFICANCE OF SECURITY BY DESIGN

2.1 The Term Security by Design

The term Security by Design may be understood in different ways. In the more
narrow sense Security by Design means considering security as early as the design
phase of the software development process. In a broader sense Security by Design can
be understood as the systematically organized and methodically equipped framework
that is applied over the lifecycle of secure software. For example, this framework may
include the embedding of secure software development at governance level, individual
security processes for the software's lifecycle phases, and security analyses of software
components integrated from other manufacturers. In this document, Security by
Design is to be understood in the broader sense.

2.2 The signi�cance for Society

Software is very important for society and the functioning and maintenance of our
social system, and secure software is particularly so. Modern information technology
and software have found their way into almost all areas of daily life, with state
institutions, companies or with private users. The significance of Security by Design
for society is illustrated by the following points:

− Prosperity: Information technology today contributes in many respects to citi-
zens' prosperity. As the major innovation and productivity driver, information
technology is saving peoples jobs, and is thus the basis for the prosperity of these
people. In Germany the digital economy and its net product has already sur-
passed the German traditional industries such as the automobile industry and
mechanical engineering [BMW12b; BMW12a]. Information technology and the
internet have become our society's backbone and nervous system. Even the way
citizens interact as social beings is heavily shaped by information technology
and thus by software. In communication and other everyday information pro-
cesses, for example during shopping or information research, software frequently
plays an important role. In all of these applications and contexts it is important
for the citizens that they are protected. Time and time again security vulner-
abilities come to light which pose a considerable risk for many citizens, even if
the technology used for this has already existed in principle for more than 10
years. For example the breach found in 2013 at Amazon [hei13] or the Sony
PlayStation breach, in which the data of more than 70 million customers was
stolen [hei11]. More and more citizens are becoming afraid of security breaches
and attacks [hei12b]. Security by Design with specific attention to the security
processes improved during the manufacture of application software can reduce
the risks for society.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 5

− Economy: The benefit that the German economy can derive from secure software
and Security by Design has a social dimension. As a high-wage country Germany
has to depend on the realization of innovative ideas, the quality of its products,
and production processes that can be designed e�ciently and economically. In
an open, connected and digitalized world companies depend on protecting their
knowledge, which represents the basis of their competitive advantage, against
competitors and potential attackers. Security by Design provides the economy's
stakeholders with an improved starting position for protecting their own inter-
ests. If this is to succeed, the position of particularly the small and medium-sized
enterprises has to be improved. Today small and medium-sized software man-
ufacturers are no longer in a position to hone their development processes on
their own. For this, applied research has to prepare the groundwork and give
the required support.

− eGovernment: Software is indispensable for government institutions. This is
true for both internal processes as well as for executing processes with citizens.
This includes many processes where the need for secure software is obvious, for
example when filing taxes electronically with the tax authorities. Significant
risks obviously exist with regard to the security of software used in public o�ces
[WAZ12]. Security by Design helps to improve software security for eGoverment.

− Public security: Public security comprises a nation's inner and outer security.
Entities that are active within this context, for example the police, frequently
have to rely on modern information technology to organize and execute their
work. Since organized crime and international terrorism have changed the threat
situation immensely (e. g. by using modern information technology), the gov-
ernment representatives have to tackle new tasks in order to be able to reduce
the risks for society [RGWS08]. To reduce risks and targets it is important to
reduce the vulnerabilities in software used by government bodies.

− Critical infrastructures: In critical infrastructures such as power, communica-
tion networks, water supply, or transport, information technology is used to a
substantial extent. In view of the great significance these infrastructures have
for society it is very important that the software used in the infrastructures is
secure against attacks, e.g. during manipulations or acts of sabotage. To reduce
the infrastructure vulnerability the software used should be secure and therefore
have been developed according to the Security by Design paradigm. The Ger-
man federal government's plan to pass an IT security law placing the critical
infrastructure operators under the obligation to provide more IT security is a
step in the correct direction.

− Democracy: The Arab Spring (see e.g. [Nü12]) demonstrated that information
technology can contribute to democratization processes. However, information
technology is important for the democracies in Europe as well: It helps to or-
ganize processes that are indispensable in a democracy. For example, informa-
tion that is required for citizens to form an informed opinion can be procured

SIT Technical Reports SIT-TR-2014-03

6 · M. Waidner et al.

quickly and practically at no cost. Other important processes such as debates
and exchange with others are becoming easily possible by overcoming space and
time constraints. Information technology and interconnection can provide trans-
parency and serve the people in evaluating politics and government entities. In a
democracy these processes require citizens to be self-determined and free. In this
context data protection and software security play an essential part. Security
by Design supports this.

2.3 The Signi�cance for Software Users

Users need software with excellent features. This is true for both professional and
private use. Security vulnerabilities in software can represent a high risk for users,
especially if the software is used in areas that are critical for business success, as-
sociated with real financial losses or may threaten one's existence. The following
examples will demonstrate the unpleasant ramifications of security vulnerabilities:

− By exploiting security vulnerabilities, an infiltrated malcode spied on and pil-
laged Nortel over years [Spi12]. For years the problem was not taken seriously.
The attackers had "access to everything", said Brain Shields, the manager who
headed the inquiry at the time [hei12a]. A multitude of possibilities for attacks
opens up if attackers succeed in implementing a malcode. Once an attacker has
accomplished this there is very little that can be done in defense by Security
by Design. But Security by Design can help to make malcode installation much
more di�cult for attackers.

− The New York Times was spied on as well by e-mails distributing malcode on
the staffs' computers [Spi13]. It is believed that the attacks were intended to
uncover the identity of those informants that collaborated with the newspaper's
journalists.

− In 2012, hackers managed to rob a total of over 36 million Euros from more than
30,000 bank customers using the malsoftware Eurograbber which targets online
banking [DMN12].

If the Security by Design paradigm is used in software development, many security
vulnerabilities can be avoided, which in turn reduces the risks for users. Besides
direct losses security vulnerabilities may result in additional problems for users. The
loss of reputation can be one of them. In enterprises the question of liability arises,
for example towards customers or partners that suffer from a disadvantage due to the
user's security vulnerabilities. It is also conceivable that high-level decision makers
may be held liable, for example if software containing security vulnerabilities was
used this may be considered as negligence.
Reducing security vulnerabilities by Security by Design reduces in turn the expen-

ditures for maintenance processes on the user side, because security patches have
to be acquired, tested and possibly distributed and installed much less frequently.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 7

This reduces the operative software costs (cost of ownership). Besides, it cannot be
assumed in all cases that users have the expert knowledge to assess adequately the
risks posed by certain security vulnerabilities. Improving the initial situation for
users through Security by Design carries a psychological component as well, because
anxieties concerning the use of modern technology may be discarded or minimized
and a trusting interaction with technology may be encouraged instead.
Especially users whose software costs represent a major proportion of their budget

are increasingly starting to question manufacturers about the security processes ap-
plied with Security by Design and often request them to demonstrate their methods
for software with enhanced security features. The mere existence of such security
processes may be a significant criterion for a user when deciding about a software
purchase. However, knowing that product manufacturing processes comply with the
Security by Design paradigm may be of interest to users with little market power,
as well as for private individuals. Such information may be helpful particularly for
those users that are less familiar with IT security issues. The restructuring of pro-
duction processes turned out to be a market success in other areas, for example with
wholefood products.

2.4 Signi�cance for Software Manufacturers

For enterprises, the introduction of Security by Design may have existential im-
plications. A number of reasons speak for introducing this paradigm into current
production processes, among them:

− Reducing secure software development costs: This becomes clearer when regard-
ing current software development and security processes. In the past security
frequently played only a minor role if any at all. Often security experts were not
involved until a product's development was quite advanced. If the experts found
vulnerabilities, the chosen architecture and design did not always permit closing
these weaknesses in a simple and easy way. To eliminate such vulnerabilities
major changes had to be done on parts of the respective software, if it was pos-
sible at all. This process would destroy achievements which were often funded
specifically at the beginning of the development. Such situations can be avoided
by considering the security requirements as early as during the software's design
phase. When compared to the traditional approach the cost saving potential is
greater the earlier corrections can be carried out. This realization is hardly new.
More than 10 years ago NIST compared the costs for remediating unless this is
an IT term I am unfamiliar with, the correct word is 'remedying' bugs during
the various phases [Tas02]. One of the results from the study is illustrated in
figure 2. It shows that the average costs of eliminating bugs early compared
with those of eliminating them later vary by a factor of 30. It can be assumed
that the factor of this disproportion may be even higher when considering solely
the security vulnerabilities. This assessment is confirmed by the data shown in

SIT Technical Reports SIT-TR-2014-03

8 · M. Waidner et al.

1 X

5 X

10 X

15 X

30 X

0 X

5 X

10 X

15 X

20 X

25 X

30 X

35 X

Requirements Analysis
/ Architectural Design

Coding/Unit Test Integration and
Component System

Test

Beta Test Post-product Release

Relative
Cost

Figure 2: The cost development in relation to remediating bugs during the various phases of a
software lifecycle according to a NIST study (source: [Tas02]).

Cost of Fixing Critical Defects
Cost of Fixing Vulnerabilities EARLY Cost of Fixing Vulnerabilities LATER

Identifying the critical bugs earlier in the lifecycle reduced costs by $2.3M

Stage
Critical
Bugs

Identified

Cost
of Fixing

1 Bug

Cost of
Fixing All

Bugs
Stage

Critical
Bugs

Identified

Cost
of Fixing

1 Bug

Cost of
Fixing All

Bugs

Requirements Requirement

Design Design

Coding Coding

Testing Testing

Maintenance Maintenance

TotalTotal 200 200 $2,472,100

200

$195,400

$139

$455

$977

$7,136

$14,102

$195,400

$139

$455

$977

$7,136

$14,102

$356,800

$2,115,300

50

150

Figure 3: The di�erent costs for remediating critical bugs during the various phases (source:
[VK11]).

[VK11] (see also figure 3): The average costs for eliminating critical bugs be-
tween the phases requirements and maintenance add up to a factor larger than
100.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 9

− Improving software security: The systematic use of security processes accords
security during the development process a much higher significance than it had
received before. Security issues are taken into consideration and analyzed over
the full lifecycle. This results in the improvement of software security. This is
demonstrated for example by Microsoft and SDL [Mic13b]. Figure 4 shows an
example where the security features of two Microsoft products were improved
after SDL had been implemented. Another example is the implementation of
the Adobe Secure Product Lifecycle (SPLC) [Ado13]: It lead to significantly
improved quality and higher resistance against attacks in the products Adobe
Reader and Adobe Flash.

− Reducing the costs for patch provisioning: Improving the security features re-
duces the number of vulnerabilities. As an immediate consequence this reduces
the frequency with which security updates or patches are required. Further
down the line it reduces the costs the manufacturers have to bear for patch
development, tests, provisioning and support.

− Maintaining the manufacturer's reputation: By improving his proprietary prod-
ucts' security features a manufacturer will receive less negative attention in the
media due to security vulnerabilities. Manufacturers can use the realization
of the Security by Design paradigm in a positive sense. Customers highly ap-
preciate investments made to improve production processes for the consumers'
benefit.

− No market limitation: A production process that does not follow the norm may
be a criterion for exclusion in a customer's decision between manufacturers or
products. In light of this it is important for manufacturers to realize Security
by Design in order not to limit their own sales markets.

− Improving competitiveness: The decision to realize Security by Design in one's
own production processes at the right time improves competitiveness. Such
an improvement, however, can only be achieved, if the realization is not too
late when compared with the most important competitors, as otherwise mar-
ket shares may be lost. Regaining market shares may be very di�cult, because
customers may not be won back immediately once they have opted for a com-
petitor's product.

For manufacturers the restructuring of development processes to follow Security
by Design is a strategic decision with far-reaching medium- to long-term conse-
quences. This decision has to be implemented company-wide and requires certain
investments during the implementation phase, which will amortize once a routine
has been established in these processes.
Many manufacturers are medium-sized companies and cannot accomplish software

development process restructuring to Security by Design on their own. Only global
corporations of a size such as Microsoft or IBM can accomplish such transformation
processes in their production on their own. For manufacturers not quite as large as
those it is important that they are supported in their implementation of Security

SIT Technical Reports SIT-TR-2014-03

10 · M. Waidner et al.

Windows:
45% reduction of vulns disclosed

one year after release

SQL Server:
91% reduction of vulns disclosed

three years after release
140

120

100

80

60

40

20

0

119

66

34

3

Windows XP Windows Vista SQL Server 2000 SQL Server 2005

Before SDL After SDL Before SDL After SDL

Microsoft products: Vulnerabilities reduction after SDL implemention

Figure 4: The impact of SDL on the security of software (source: [Mic13b]).

by Design approaches. This allows smaller manufacturers to remain competitive in
their niches when compared with the larger manufacturers.
For the practical implementation of Security by Design it is absolutely essential

that research considers today's established peculiarities and characteristics of soft-
ware production processes. Production processes may be very complex and can be
defined by many constraints such as:

− time pressure
− cost effectiveness
− pressure to be innovative
− compliance demands for certain industries or countries
− lines of products
− integration of supplier codes
− integration of open source components
− legacy code use
− reducing human error in�uences
− measurability and controlability of measures within Security by Design

Introducing new methods and security processes in software manufacturing and
implementation has to be manageable and controllable. The effects of individual
measures during the transformation of the manufacturing processes have to be mea-
sureable in an objective way in order to be able to assess which measures are bene-
ficial and realizable in a cost e�cient way and which ones may need further modi-
fication. Each innovation within the Security by Design process at production level
basically requires a corresponding solution at management level which enables check-
ability and controllability. The solution at management level has to consolidate the
relevant security aspects with the information related to the constraints mentioned
above, evaluate them and present them for decision support.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 11

In addition to the approach based on Security by Design, manufacturers also have
other options to improve the security of their production processes and products,
for example by certifications such as Common Criteria. Even though this possibil-
ity has existed for many years, manufacturers usually avoid it for various reasons.
Certification is expensive, time consuming and has to be repeated for even the small-
est modification and further development of a product. Today certification is used
mainly only for niche products with specific security requirements.

SIT Technical Reports SIT-TR-2014-03

12 · M. Waidner et al.

3. SOFTWARE SECURITY THROUGH AUTOMATION AND
REDUCTION HUMAN FACTORS

The IBM X-Force reports [IBM12], the BSI progress reports [BSI13], the annual
Coverity Scan Reports [Cov13] and the frequent computer bugs classified by SANS
as �dangerous� [Chr11] all demonstrate concordantly in their analysis and evalua-
tion that primarily the same vulnerability types have occurred for years. This means
that the bugs and vulnerabilities resulting from this could have been avoided. For
example, in his standard work about secure software development Gary McGraw
establishes an entire taxonomy for such known potentially security relevant cod-
ing errors during the programming phase (Coding Errors) (compare chapter 12 in
[McG06]). Mostly they are errors caused by the human factor. To understand how
these errors originate from the human factor, it is helpful to take a look at the
conditions under which software, in particular application software, is developed to-
day. Even today software development is in many cases driven exclusively by the
software's functionality. Security tends to play only a minor part, if any at all.
The developers are experts in the respective software application domain; they do
not give a high priority to security issues. The pressure for innovations affects the
development of new functions and leaves developers only a small amount of room
to deal with security issues as well. If security guidelines for software development
actually exist, for example programming guidelines and manuals, they are often re-
alized inadequately. Instead the degrees of variances in programming languages were
often used without much thought, if a desired function could be achieved with it.
When security aspects received a systematic consideration, they were typically ex-
ternalized, for example by security experts developing specific security components
such as wrappers, firewalls or virus scanners. Usually developers did not use already
existing tools to detect software vulnerabilities.
Security vulnerabilities that have developed due to the human factor unfortunately

cannot be changed e�ciently and effectively in practice by combatting the causes,
for example in�uencing developers to convince them to modify their working meth-
ods. It is to be expected that human errors that can be traced back to ignorance,
carelessness or �ightiness will occur to almost the same extent as before. The idea
that a manufacturer may be able to change a large number of developers within a
short time is unrealistic. One possibility to improve the situation is to provide the
developers with technical solutions that keep them from committing the respective
errors.
These man-made and by now well-known security errors could largely be avoided

by assistance systems during development [Zel07; BBMM10] and by security oriented
parameters. Once integrated into the development environment these assistance
systems could automatically detect errors that lead to security problems and suggest
alternatives to resolve them. Further evolution could even result in certain mistakes
not being made anymore. Most of the remaining vulnerabilities could be detected

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 13

with automatic or semi-automatic support during software roll-out. A vision can be
formed from combining these points:

The software development process of the future will be defined by
consistently security oriented programming languages and tools that
can be integrated seamlessly. This will prevent security relevant er-
rors as per the research’s current state, and vulnerability detection
will be systematic and mostly automated.

Moreover, this evolution of the software development process will improve cost
effectiveness in software development.

3.1 Challenge: Security Oriented Programming Languages
Constructs, and Managed Code

Buffer over�ows demonstrate impressively the problem of insu�ciently security ori-
ented programming languages. Buffer over�ows have been exploited as security
vulnerabilities for more than two decades and just as long and without interruption
they have been part of the 25 most dangerous vulnerabilities [Chr11]. Basically, this
concerns every code written in programming languages that do not automatically
monitor storage area access � prominent examples for these programming languages
are C and C++.
Buffer over�ows cannot occur in Java, if Java Virtual Machine (JVM) has been

implemented correctly, because JVM controls storage area compliance. It is still
possible, however, to invoke native code from various Java technologies so that
buffer over�ows are possible �through the backdoor� with Java programs as well.
Just like JVM, the managed code of the Microsoft .NET framework was designed

with security in mind: bytecode carried out in Common Language Runtime (CLR)
prevents vulnerabilities such as buffer over�ow and privilege escalation. Unfortu-
nately, the .NET framework's programming language C# is not consistent in pre-
venting vulnerability-induced pointer arithmetic: The key word unsafe still permits
pointer arithmetic.
Current Java API exploits turned the attention increasingly towards the Java

security model: On April 17, 2013 Java 7 published a patch release with update 21,
providing 42 patches for security errors, several of which reach the maximum value
of 10 in the Common Vulnerability Scoring System. This is even more serious since
these vulnerabilities exist for different operating systems � due to Java's platform
independence. These attacks utilize vulnerabilities during the securing of critical
Java API resources such as class loading or reflection that developers introduced
unknowingly during platform enhancement. Since the Java security model allows the
active limitation of privileges, these vulnerabilities remain unnoticed and are adopted

SIT Technical Reports SIT-TR-2014-03

14 · M. Waidner et al.

unnoticed into the new Java releases. A different model providing for security from
the very beginning would render these vulnerabilities unusable or at least visible.
Type systems could be used much more widely than they are today: Type systems

check and protect the semantics and thus represent an approach that achieves IT
security by safety. The security models of managed code languages such as Java are
inconceivable without a type system. For example, the Java type system ensures
that pointer arithmetic remains impossible even if type conversions occur. Other
parts of the security architecture rely on these invariants guaranteed by the type
system. Type systems can be designed to be as powerful as desired. Approaches
have been developed that in part far exceed type systems such as Java: For Bali, a
variation of Java, a full security type system was introduced [ON98]. With [Loc12]
a type-safe model for concurrent Java programs is available. A first approach to
type-safe product lines was proposed in [AKGL10]. For web applications there is
a WSDL enhancement in the direction of type systems [LPT06]. In [HHH12] an
approach using contracts is introduced for the WSDL composition. The limitation
inherent to type systems is that they usually have to be designed to be context
sensitive. Security type systems normally associate information such as secret or
public with program parts such as individual instructions or variables. During pro-
gram execution, however, these parts may process a number of values that may be
either secret or public, depending on the execution context. The granularity of more
complex type systems is often too low to reproduce realistic program behavior.
Ultimately, restructuring programming languages towards IT security orientation

seems to be the most consequent way. JOE-E [MWC10] presents a first approach
for Java.
The challenge for research will be to show what a migration path towards security

oriented programming languages could look like and how this path can be pursued
consistently [BHLM13], in such a way that it is compatible with the enormous
amount of already existing software.

3.2 Challenge: Modeling Risks, Threats and Maturity Levels

Risks become ascertainable, describable and manageable only by modeling the risks,
the threats and the maturity levels. There are unfortunately no generally recognized
approaches or generally accepted tools for risk, threat and maturity level modeling
for the development of secure software products that are not intended for high
security areas.
The following list of tools on risk and threat modeling demonstrates that manu-

facturers are proceeding on differing basic assumptions and origins:

− TRIKE Threat Modeling Methodology [SLE05]: TRIKE is a heuristic for threat
modeling and can be used for systems and software. TRIKE includes all parties
in the risk assessment and a�rmation process.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 15

− CORAS Model-based Method for Security Risk Analysis [LSS11]: CORAS fo-
cusses on risk analysis and can in general be applied to more than just to soft-
ware (development) alone. It offers a tool based methodology for the model
based risk analysis of security relevant systems.

− Operationally Critical Threat, Asset, and Vulnerability Evaluation for opera-
tional risk, not technical risk (OCTAVE): OCTAVE only deals with operatiional
risks, not technical ones.

− CCTA Risk Analysis and Management Method (CRAMM): The methodology
developed by Central Computing and Telecommunications Agency (CCTA) is
closely tied to using a commercial tool and carries out a threat and vulnerability
analysis as well as a risk assessment in order to derive appropriate measures.
Since carrying out CRAMM involves significant expenditures, it is considered
only as the method of choice for critical systems.

− AZ/NZS 4360 : AZ/NZS 4360 represents a generic standard for documenting
and managing risks. AZ/NZS 4360 includes seven steps: risk context, risk iden-
tification, risk analysis, risk evaluation, risk treatment, risk documentation and
communication, risk monitoring and reviewing.

The following three frameworks for stating the achieved security levels start from
different points as well:

− The Integrated Measurement and Analysis Framework for Software Security [AAS10]
methodology proposed by the Carnegie Mellon University’s (CMU) Software
Engineering Institute (SEI) can be applied to the phases of the software devel-
opment process.

− The publication [AAS12] gives an overview of the various possibilities to measure
the security level.

− CVSS Common Vulnerability Scoring System determines vulnerability severity
ex post as a value between 0 and 10 using a variety of categories.

There is at least one analytical tool to determine the governance maturity when
developing secure software: The Open Software Assurance Maturity Model (Open-
SAMM [Ope13]) is a model for determining the maturity of an organization with
regard to secure software processes, thus referring to organizational key figures.
Though manufacturers do offer different tools for risk, threat and maturity mod-

eling, there still remain several aspects that necessitate clarification:

− How can risk, threat and maturity modeling be carried out so that they deliver
intersubjectively reproducible results?

− How can it be ensured that objective approaches for risk, threat and maturity
modeling will be used more progressively?

− How do this challenge's models interact with the development models of the
following challenge? How can risk, threat and maturity models be integrated
seamlessly into development models to achieve a secure software lifecycle?

SIT Technical Reports SIT-TR-2014-03

16 · M. Waidner et al.

3.3 Challenge: Development Models for
Secure Software Lifecycles

Rigorously applied development models raise a software's security level from the
very beginning over the complete lifetime [Mic13b]. To realize these frameworks it
is essential that they be integrated successively without delays for the development
phases and that they mesh in such a way that they appear to the protagonists as
if made from one piece, instead of sitting next to each other like a bunch of silos,
which was the case until now. Unfortunately no framework features complete and
seamlessly integrated assistance systems, and it is not possible to verify or test
whether security oriented tools are applied correctly and in a sustainable manner.
The following lists frameworks with a high maturity level:

− Microsoft Security Development Lifecycle (SDL) [HL06]: According to Microsoft,
SDL led to a measurable reduction of the security relevant vulnerabilities [LSP+11].
Each SDL step is supported by tools [Mic13a]. As far as it is known there is no
obligation to use a tool for a step. It is not possible to carry out semi-automatic
or fully automatic checks to find out whether tools are being used, and only
some of the tools are integrated into the development environments.

− Software Assurance Forum for Excellence in Code (SAFECode): The SAFECode
consortium [SAF07] started with the aim to distribute processes for secure soft-
ware development industrywide. Examples of SAFECode members are Adobe,
CA Technologies, EMC Corporation, Intel Corporation, Microsoft Corp., SAP
AG, Siemens AG and Symantec. Recommendations are welcome throughout.
It remains open how the detailing, implementation and proof of having carried
out the recommendations is done, as well as how the automation of software
security by means of tools is approached.

Integrating the following research approaches as tools would close significant vul-
nerabilities in secure software manufacturing. These approaches present appealing
starting points for assistance tools as per the above description:

− Program Comprehension: The work at the universities of Stuttgart and Bremen
on program comprehension may offer a promising approach in the context of
secure software development. Analyses of program behaviors and architectures
are to be one part of a secure development process. One possible technical
solution may be the Bauhaus project [Bau13]. The security related analyses
made possible by this are described by Bunke and Sohr in [BS11].

− Safety im Softwareentwicklungsprozess: [RBG12]: SAFE offers a hierarchic pro-
gramming model that contributes to secure web application enhancement (in-
cluding the secure personalized code of individual users).

Without doubt, the development models and research approaches mentioned above
are useful for raising the software security level from the start. For further develop-
ment, the following questions need to be answered:

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 17

− How can assistance systems for preventing vulnerabilities during the software
development process be embedded rigorously and seamlessly into development
environments so that existing vulnerabilities may be closed using lifecycle ap-
proaches? Once a vulnerability has been detected automatically, tools for the
fully automated vulnerability recognition in software manufacturing may pre-
vent known vulnerabilities for the large part, for example by allowing the trans-
mission of a version into the version control system repository only after the
vulnerability has been eliminated.

− How can transitions between development cycle phases be formed to ensure that
decidedly listed vulnerabilities are not present (anymore)? Ideally such assur-
ances should be fully automatically or alternatively semi-automatically verifi-
able.

3.4 Challenge: Veri�cation and Testing

Ultimately each software has to be tested if it is fulfilling the requirements, in our
case if it is secure, i. e. does it meet the given security requirements. In view of
the software's complexity (and the requirements to be tested!) it is necessary to
automatize the verification to the greatest possible extent here as well.
Basically three procedures are available to choose from, all of which have their

strengths and weaknesses. Static Code Analysis inspects the program code to review
all the possible executions of a program. The desired result is that all possible
executions meet the (security) requirements; then the program can also be verified as
meeting the requirements. Obviously such proof is eminently valuable. Interestingly
enough, in IT security a much-cited disadvantage of static analyses transforms into
an advantage. Static code analyses abstract from a program's user entries. In
other application areas this lack of information about realistic user entries frequently
leads to inaccurate analytical results. However, in IT security one has to suspect a
malevolent user (the attacker), for whom all possible entries are thus realistic. Static
code analyses automatically take such entries into consideration, just like any other.
Unfortunately static analyses have both theoretical barriers and practical prob-

lems. The halting problem says that there is no general method that can predict
any given program's behavior. This is why static code analyses have to work with
approximations. Depending on the analysis' design this may either lead to false
alarms or to actually existing problems being overlooked. To construct an analysis
in such a way that it recognizes vulnerabilities in any random program at a rate of
100 percent is regrettably not possible.
Another problem in practice is that the static code analysis must know and be

able to analyze the complete program text in order to be in a position to make
verified statements. Using varied programming languages, distributed or inaccessible
programming codes pose an immense challenge for static code analysis. In practice,
a technology stack such as web applications (e.g. JavaScript in a browser, PHP-

SIT Technical Reports SIT-TR-2014-03

18 · M. Waidner et al.

SQL-C assembler in a server) is not open to current analytical technologies. This is
why static code analysis today is usually limited to individual subsystems, the secure
functioning of which represents an important basis for the overall system's security.
But by now code analyses have reached a high maturity level for such systems.
Just recently systems for the static code analyses or more precisely for Information
Flow Control were introduced and executed successfully on medium sized and large
programs, initially the tools JOANA [HS09] and FlowDroid [FAR+13].

The second technique, the testing, involves other requirements. Testing necessi-
tates the possibility to execute the program in order to compare the result to the
specifications. It is hardly relevant for many testing approaches which program-
ming languages were used for the software testing. Assuming that errors can be
detected reliably, testing should not cause false alarms (if the result does not meet
the requirements, then there is a problem). The problem of the testing is that only a
finite quantity of executions may be checked, but the quantity of possible executions
is infinitely large, which raises a problem in the next new execution, despite best
testing.

In practice it comes down to testing as many program behaviors as possible; for
this, test generators generating the test input data are increasingly employed. Such
generators can generate random input (fuzzing), but also search very specifically
for security vulnerabilities. Modern test generators search very specifically for vul-
nerabilities that static code analyses have determined as being possible (DART /
Microsoft), or recombine error causing input (LangFuzz / Mozilla) to automatically
detect hundreds of security vulnerabilities. However, none of these systems can offer
a guarantee for future executions .

The third alternative would be to translocate the test into the actual execution,
thus checking the result during every execution, i. e. also during production! This
allows for the preempting of faulty results due to constructional conditions. The
disadvantages of this runtime verification are the increased computation expenditure
during runtime and the fact that error situations cannot be recognized and dealt with
until execution. At that point in time only little context information is available,
which makes it di�cult to conduct an expedient error treatment. In real life such
runtime tests can be realized at justifiable costs [Bod10], but the static code analysis
remains the sole technique that can guarantee the absence of errors ex ante.

Whether static code analysis, testing or runtime tests: Each program analysis
needs to know what it is looking for � and thus requires a specification of the
desired behavior (to search for vulnerabilities within this context) or of the unde-
sired behavior (to search for possibilities to accomplish it). There are a number
of program behaviors that tend to lead to an undefined behavior or program ter-
mination and therefore are always undesired; for example this allows specifically
verifying or testing for buffer over�ows. The desired or undesired program behavior
has to be exactly specified � for example, in the form of a security model describing
and restricting users' and subsystems' precise rights. Just like other specifications

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 19

such models can become very complex very quickly. This leads to the absurd situa-
tion that (provided adequate progress in verification and testing) testing whether a
software meets the specification improves, whilst we still do not know whether the
specification comprises what is desired or needed.
Given the multitude of challenges it becomes clear that no single approach will

su�ce on its own. The different program analysis procedures (static code analysis,
testing and runtime test) have to work hand in hand to play out their respective
strengths � such as the static code analysis of small subsystems, the interaction of
which is to be checked within the respective context using comprehensive tests. The
biggest challenge, however, is formulating suitable specifications in such a manner
that they are accessible to every programmer. Without specifications there are no
errors and thus no correctness, "only" surprises.
Methods for extracting specifications from existing systems open up new oppor-

tunities � currently in the form of axiomatic pre- and post-conditions [ECGN01],
finite automatons [DKM+12] or process oriented models [Sch11]. The basic idea
is to apply such methods to existing systems and to extract standardized models
for their behavior (also in the light of security!) from this, in order to check (by
means of verification and testing) in what way other systems fulfill these (implicit)
standards. With regard to security, the result would no longer be the infringement
of an explicitly specified security model, but rather the anomaly when compared to
other (similar) systems. Extracting such detailed specifications is an open research
issue; but the experience encoded in billions of programming lines is a prize ready
for the taking.

3.5 Challenge: The Sustainably Secure Integration of Cryptographic Prim-
itives and Protocols

Designing complex systems is normally done component-by-component; the enor-
mous complexity of large software projects such as modern multi-user operating
systems is not manageable without modularization. Other than in the case of miss-
ing functionalities, which can usually be upgraded easily by adding another module,
upgrading security features is not quite so effortless. Modularization is often accom-
panied by an isolated view of individual subsystems, which carries a high inherent
security risk. Even if each individual component seems to be "locally secure" it still
does not guarantee that the overall system is "globally secure".
This compositional problem exists in two dimensions: In the vertical dimension

an attacker will compromise a part of the software stack to gain access to other
levels. For example, an attacker breaks into a computer's operating system to ma-
nipulate the applications running on that computer. The problem in the horizontal
dimension is more subtle but no less significant. Security vulnerabilities in unimpor-
tant components may compromise the security of highly critical components (and
as such the security of the overall system). For example, the Stuxnet malware was

SIT Technical Reports SIT-TR-2014-03

20 · M. Waidner et al.

able to use a security vulnerability in the Windows printing system to compromise
the whole computer and ultimately to spread over the Busher processing plant.

The way in which local security guarantees can be cancelled out globally by an
unsuitable composition in practice has been demonstrated by the attack on the chip-
and-PIN procedure [MDAB10]. The chip-and-PIN procedure is a chip card based
payment system; the customer places his card in the merchant's pay terminal and
authorizes the payment by entering the PIN or by signing a bill. Each available type
of authorization can be considered as acceptably secure in itself. The mechanism for
choosing between the two modes, however, is implemented in such a way that the
card will accept any PIN at signature authorization. In a man in the middle attack
a terminal may be tricked into requiring an authorization by PIN, while the card is
in signature authorization mode. This means that an attacker may be able to use a
stolen card for payment without knowing the valid PIN or without having to forge
the signature. He merely has to be able to control the communication between the
stolen card and the terminal. For example, this can be achieved during payment at
a terminal by using a self-made dummy card that is connected to the stolen card
via radio or a hidden cable.

The composition problem becomes especially evident in the TLS key renegotiation
attack [RRDO10]. The TLS protocol serves to build and operate an encrypted
and authenticated communication link. During an ongoing session it is possible to
discard the current key and to negotiate a new key for further communication. In
a classic key renegotiation attack an attacker interrupts his victim's TLS secured
communication setup and starts his own TLS secured session instead. He initiates
a key renegotiation, then proceeds with the victim's communication setup, which
had previously been blocked. The emerging connection is effectively encoded and
authenticated. On the server side the authentication process is finished. The client,
however, is still in the middle of the registration process due to the interruption, and
is subsequently still sending out login information. This may lead, for instance, to
confidential login information becoming visible as a public text message in a social
media portal.

With its universal composability and reactive simulatability models [Can01;
BPW07] theoretic cryptography offers an approach for resolving the dilemma: If
one of these models is successful in providing formal evidence of security for one of
the components, it guarantees the secure use of said components within an arbitrary
context. Provable security in the previously mentioned models, however, entails an
abundance of disadvantages, which are in con�ict with the practical benefits. For
one thing, proving security is highly complex in itself, and beyond that it is error-
prone. Since all formally conceivable attacks are actually precluded the models are
correspondingly strict; often an immense expenditure is necessary to design security
provable systems. With regard to e�ciency the result falls far short of practically
motivated but theoretically insecure adhoc solutions. Typically, a guarantee for the
remainder of the requirements can no longer be given, even if only one security re-

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 21

quirement has been breached. For all of these reasons these models are de facto
unsuitable in practice.

A more pragmatic problem-solving approach from software engineering arranges
for "contracts" between the individual system components. Each component of a
complex system correlates with other components and utilizes or performs services.
The security features of the services rendered are regulated in a contract. This en-
sures at least that no component mistakenly expects specific security features from
another component. But how local contracts between components may be derived
from global security requirements still remains an open issue. Beyond that, the com-
ponent contract model makes the reuse of these components in other contexts more
cumbersome. It heavily restricts modularity utilization and specifically the issue of
securely integrating legacy systems remains unresolved. A prominent example of
potential problems arising, when only one individual module is replaced, is repre-
sented by the CAN bus for the electronic communication between control devices
in automobiles. Originally conceived with the aim to reduce cable harnesses and
in consequence the vehicle's weight, security against manipulations from external
attackers was not the focus of its development. The bus could be accessed (e. g.
for maintenance purposes) only in a tethered way via a plug contact in the vehicle
interiors. Critical within this context was the request for wireless maintenance ac-
cess without the hassle of cumbersome wiring accompanying the universal advent of
WLAN and Bluetooth interfaces. Without a suitable security concept and simply
by integrating a radio module, a universal communication bus controlling critical
components such as the engine control unit or brakes was left open to wireless access
from the outside.

In summary, various questions remain open with regard to "secure integration".
For one, it is still not adequately resolved to what extent local security requirements
at component level may be derived from the global security requirements of an overall
system. The same is also true vice versa, where conclusions may be drawn from
an individual component's security features onto the absolute maximum possible
security guarantees for the overall system. The most practical approach, starting
from an abstract overall system, seems to be the development of tools that allow
refining the architecture gradually into such detailed modules that simultaneously
pave the path for providing proof of the overall system's security based on the
individual modules' features. Even in a purely intuitive system design this approach
is frequently pursued "manually". Currently, though, universal formal tools can
give only insu�cient support. This, however, does not affect the following two
issues: How to identify systematically the essential global security requirements
for an overall system, and how to recover reliably the warranted formal security
guarantees in the case of legacy systems.

SIT Technical Reports SIT-TR-2014-03

22 · M. Waidner et al.

3.6 Challenge: Detecting Intentionally Introduced
Vulnerabilities and Provenance Tracking

To increase software security today a certificate is required to assure that a certain
software product stems from a trustworthy manufacturer. Without mentioning the
problem of forged certificates, which have appeared increasingly over the recent
years, there are still several other points of attack inherent to such a procedure: For
one, the user would have to know all the suppliers in order to be really able to trust
them. On the other hand, a software manufacturer, who in principle is trustworthy
and known, may have other interests than the user. Many a time in the past it
became public that some software spies on users to a certain degree. For example,
mobile apps such as Facebook or Twitter transferred a mobile phone's complete
address book onto their servers without the explicit approval of the user, in order
to search the address book for known contacts. But insider threats or hackers may
infiltrate a program with a code unnoticed as well, thus compromising the program's
security.

However, being able to analyze a programs functionality would be better than
having to rely on a manufacturer's benignity. Though program analyses are never
able to understand a programs full functionality due to the halting problem, certain
security statements may be approximated in such a way that a program categorized
as secure will definitely be secure, while a program categorized as insecure may really
exhibit security vulnerabilities or may not have been su�ciently analyzable. The
respective techniques are categorized under the key word language based security.
Especially the information �ow control domain provides the option to check pro-
grams for vulnerabilities: information �ow control reviews whether sensitive data
such as an address book may end up in public channels, for example the Internet.
This allows for the tracking down of spy programs. Furthermore, information �ow
control can verify if untrustworthy user entries may affect important program cal-
culations. Unfortunately such injection attacks appear again and again, permitting
the attacker to execute arbitrary code capturing complete servers in the Internet
and stealing user data, for example credit card numbers.

To execute information control effectively the data origin (provenance) has to be
known. The provenance will be attached to all computation results depending on
this data. Only in this way can it be guaranteed that at the end of a computation it
is still known whether it depended on secret entries or whether the computed data
may be publicly visible.

The bottom line is to guarantee an end-to-end security which protects sensitive
user data over their entire lifecycle. It starts with the encoded storage on a server,
data access control, information control during data processing and ends with the
encrypted transfer or storage of the results. The goal must be to receive a certificate
about a program's provenance and a program has to handle its data in a secure
manner as well.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 23

3.7 Challenge: Common Language

Security by Design, i. e. considering security from the very beginning, necessitates
that the overall development process is accompanied by documentation recording
the security requirements and the already achieved security assurances. These doc-
uments will serve as communication over the various development stages and beyond
that as the communication between the various disciplines.
Until now, though, it was not ensured that the varying views of the individual dis-

ciplines involved were consistent. The individual disciplines' differing terminologies,
which are not compatible with each other, represent a major hindrance. Colloquial
formulations frequently used instead of a common language are not precise enough
and lead to misunderstandings. Thus the individual assurances given by the involved
disciplines often do not complement each other to form a seamless overall guaran-
tee. This means that really reliable security assurances can be obtained frequently
only "locally", for example for individual secure communication connections, the
availability of backups or for the correct implementation of a specific functional re-
quirement. If the individual disciplines' views are inconsistent, it will not be clear
which security guarantee is valid for the overall system.
A perfect example of this problem arising is a bank transfer from 2004 secured

by quantum cryptography. Physicists implemented a process which would most
definitely prevent an attacker from getting any information about the code. But
an attacker was able to modify messages in a very specific way, without having to
learn or know the contents. The bank transfer protocol implemented on top of the
quantum cryptographic process, however, expected a different security handshake.
By wrongly assuming that the secret key transfer would automatically result in a
secure bank transfer, the overall protocol became vulnerable and the amounts to be
transferred could be modified [BMQS05].
In cryptography it is assumed that implementations are correct. Cryptography

only investigates constructional weaknesses that are independent from implementa-
tion errors. Program code verification reviews the correctness of an implementation.
In most cases these two terms of correctness are not congruent, because the often
purely functional specification reviewed in verification does not ensure that the cod-
ing material used in the encoding process is good. When bad encoding material
has been used an attacker may be able to gain information about the encoded clear
text [hei08].
Programming errors may also lead to an illicit information �ow. Special code

analysis tools (information �ow control) may find undesired information �ows, but
in order to detect such undesired information �ows the admissible information �ows
have to be specified. It is not ensured, however, that such a specification is consistent
with the cryptographic specification.
There are already promising approaches in software development that enable the

modeling of security aspects during the design stage [Jür02; BDL06; LBD02] and the
reviewing of their implementation [JYB08; DPP12]. But these are mostly solutions

SIT Technical Reports SIT-TR-2014-03

24 · M. Waidner et al.

with a focused area of application. It is a big challenge to find cross-cutting solutions
which guarantee that a consistent picture exists during the whole development cycle
and across all disciplines involved.
Software verification investigates the relationship between the input of a process

versus its output, i. e. the functional features of processes. Security features,
however, are non-functional. For example, a successful decoding defines the encoding
functionally. The security of an encoding springs from the distribution of tasks, not
from their relationship to input. If this vulnerability can be closed the software
verification methods may be applied in the IT security area as well.
Normally the security requirements for an overall system are holistically formu-

lated. It is often unclear, what demands these requirements imply for subsystems.
On the other hand, it is generally di�cult to determine what guarantees may be
derived for an overall system from the features of the individual components. It is a
challenge to propagate requirements and guarantees equally between the individual
development process stages.
In information �ow a method has to be found for specifying admissive information

�ows based on cryptographic requirements and architectural models.
The demand for a common language for the different disciplines raises new issues,

for example with regard to the correct degree of abstraction. A high level of detail
is necessary for some applications such as cryptographic protocol verification. Such
a high level of detail, however, may have a negative impact on other applications
due to the overall system's complexity.
It remains open how to extrapolate systematically from abstract colloquial security

statements to issues of individual disciplines. A progressively refining methodology
in the sense of an attack tree is conceivable.
Due to the increasing juridification of the requirements on IT security the legis-

lator plays an increasingly important role within Security by Design to formulate
functional and non-functional requirements on the systems. The distinctive feature
is that the legislator generates its own language system in part, the legal termi-
nology, with a compulsory claim to validity. Transforming this legal language into
general concepts, while preserving the meaning, is a lawyer's classic type of work. In
Security by Design another task is added: Guaranteeing the transformation into the
language domains of the various computer science disciplines while preserving the
meaning and documenting the transformation processes in a reproducible manner.
This task can be accomplished only if all disciplines work together.
The entirety of the approaches pursued by the individual disciplines shall help

to evaluate the security of complete systems. It is not known to what extent the
disciplines' methods of approach are examining all security risks.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 25

4. SECURITY BY DESIGN IN DISTRIBUTED DEVELOPMENT
AND INTEGRATION

Present and future software products and IT solutions come from a single developer
team only in the rarest of cases as figure 5 shows. For example, within development
commissions or by providing open source licenses, other manufacturers may supply
software in form of components, libraries and even services that may be combined
with proprietary components to larger products. In another aggregate step vari-
ous products are integrated frequently to create complex IT solutions. For users
it is important that the software used by them has the security features they ex-
pect, whereas the security requirements and expectations of the different users may
vary [FPP12]. Many users with a higher need for security are now looking very
closely at what integrators or manufacturers are doing to improve the security of
IT solutions or products [Bai12]. But if in turn integrators or manufacturers use
the products of other manufacturers, appropriate methods that contribute to the
end product's security should be applied along the complete supply chain. Taking
the complete supply chain into consideration is important especially because it al-
lows manufacturers to reduce the risk for users with regard to Advanced Persistent
Threats (APT), in which individualized and specialized attacks are carried out onto
selected targets. In the past, such security vulnerabilities, which originated from
adequate security processes not being applied during distributed development and
integration [Bai12], were frequently the ones used for these types of attack. Even
an individual component's security does not represent a su�cient provision for the
security of the emerging overall product. Vulnerabilities oftentimes occur during in-
tegration at the spots where integrated components or products interface. Another
problem arises from the integration of open source software, commercial off-the-shelf
software (COTS) or legacy code, which is due to the typical market needs of today's
software development with regard to time and costs.
To advance the security of integrated solutions and products that have originated

in developed distribution suitable procedures and methods are necessary, in which
the parts of extremely complex supply chains of software development will be con-
sidered. The responsibility to apply such procedures and methods typically lies with
the supply chain's last link. But for developing secure software their suppliers have
to be included into the security processes as well.
By now the software industry has realized the major significance of security pro-

cesses along the complete supply chain for secure software and IT solution develop-
ment. For example, there are activities such as the Open Group Trusted Technology
Forum [OTT11], which consider software security whilst taking distributed manu-
facturing processes into account.
Even if today security is increasingly more important to users and manufacturers

as a feature and quality characteristic of their IT products and solutions, it is to be
noted that manufacturers put in considerably less effort concerning the systematic

SIT Technical Reports SIT-TR-2014-03

26 · M. Waidner et al.

“Do your products contain code from the following sources?“

Globally distributed development teams

Third-party software vendors

An outsourced development team

Open source providers

95%

94%

92%

92%

Figure 5: The use of externally developed code (source: [For11b]): The values are based on the
survey of 336 IT specialists relevant to software development in their respective company. The
companies are located in the USA, Canada, Great Britain, France and Germany.

“What methods do you use to determine the integrity (i.e., quality, security, and safety) of the
software you receive from your:“

Software chain providers In-house-developed

Automated testing in QA (e.g., functional
testing, load testing, and unit testing)

Automated testing in development

Risk/security/vulnerability assessment

Manual code review

We do not use any mechanism

Don‘t know

We do not receive any software from this
type of provider/developer

51%
75%

44%
69%

35%
70%

35%
68%

17%
14%
14%

4%
9%

2%

Figure 6: The di�erence in quality assurance in internally and externally developed code (source:
[For11b]): The basis is the same survey as in �gure 5.

and methodically embedded achievement of security in externally developed software
components than they do for their own software products. This is evidenced by the
findings of a study on the security feature test of externally developed code, displayed
in figure 6. The study in figure 6 reviews only the phases that come after the design
phase in the software lifecycle. However, it is to be assumed that for the majority
of the manufacturers and integrators the prevailing situation regarding the design
phase does not differ substantially from the core statement made in figure 6. An
important reason for these deficits may be that manufacturers and integrators do not
have a uniform standard of procedures and methods with which security processes
along the complete supply chain may be realized. Existing security development
processes such as Microsoft SDL were not explicitly designed for the distributed
development over complex supply chains or for integration [WOUK12].
Secure software product and IT solution development requires uniform and so-

lutions for secure software development processes over the complete supply chain,
since components of various manufacturers and components that have been devel-
oped following different security processes are embedded today into most of the

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 27

relevant software products and IT solutions. Approaches referring only to propri-
etary software development do not su�ce to reduce a hacker's chance of success and
to improve software security significantly for users [CA11]. Concerning practical
application there still is an enormous need for research. The idea of future secure
software development is defined by the following vision:

The distributed development of secure software and the integra-
tion of secure IT solutions will be distinguished by uniform, cross-
organizational and security processes along the supply chain, in
which security is factored in at the earliest point in time and con-
sistently over the lifecycle.

Realizing this vision represents an important strategic decision for software man-
ufacturers. On the one hand this decision means for manufacturers that they have
to cooperate to enhance security and that they have to depend on their partners
to contribute accordingly to the cooperation as well. But cooperation also requires
that existing forms of interaction are modified and developed further. On the other
hand, such a strategic decision offers software manufacturers the potential to im-
prove their products' security accompanied by more favorable development costs.
Realizing security processes that incorporate the supply chain represents an im-
portant competitive factor for manufacturers. With the increasing significance of
software security for the user such security processes represent an important cri-
terion in marketing due to continually increasing compliance guidelines to reduce
risks.
For this vision to become reality, a series of challenges has to be mastered, which

is described in the following.

4.1 Challenge: Standardizing
Security Processes Over The Complete Supply Chain

A coordinated and standardized approach between the various supply chain stake-
holders is required to be able to apply security processes in a supply chain manage-
ment comprising manner. This necessitates standards that have yet to be developed
and cover all relevant aspects of distributed development. The following is to be
taken into account:

(1) Standardized methods and tools to be used in the security processes

(2) standardized description of the security processes used during component devel-
opment

(3) standardized description of the security features required from and offered by
the components

(4) possibility to review whether security processes are used correctly

SIT Technical Reports SIT-TR-2014-03

28 · M. Waidner et al.

Within this context standards will have to cover the entire spectrum of today's
distributed development. The spectrum ranges from distributed development in
which new software components are being developed within dedicated development
assignments, where design and software component development can be guided by
the assignments specific requirements, down to the integration of pre-built compo-
nents such as open source or COTS products. On the one hand, developing such
solutions to finished standards represents a substantial challenge that has to be mas-
tered. On the other, such solutions and standards offer a chance for manufacturers
and integrators to improve software security, as in doing so they specify strategies
and interaction forms, which will not have to be redefined in other individual cases.
A unified standard creates a common understanding and congruent ways of thinking
among all those involved.

Today's software development world is characterized by very high complexity.
Even if the software industry is very globalized and harmonized with regard to
specific aspects, the complexity is still determined by things such as differing corpo-
rate cultures, peculiarities of the user sector, national and international regulations,
different software engineering methods (e. g. agile development), and distinctly
different security processes in software development [Bai12]. This complexity is an
obstacle that has to be overcome when standardizing the supply chain management
dealing with security.

Currently many software industry enterprises have the security process improve-
ment work yet ahead of them. A further reaching approach encompassing the entire
supply chain is for most enterprises still far away, even though some software in-
dustry representatives and users already understand that software product security
measures have to include the software development supply chain. For example, it
has already been proposed that a company's risk management needs to take the
risk caused by supply chains into account. Works within this context mainly give
answers on how to take action against attacks on supply chains, for example in this
standard [ISO11] or in [MM08; WLL08; SRM+09]. However, these suggestions for
supply chain security are not unique to software products. There is quite a noticeable
trend, especially with government organizations as purchasers of software such as
end products, components or integration solutions, to scrutinize manufacturer secu-
rity processes more intensely. For them the existence of suitable security processes
is an important criterion when deciding upon certain products or manufacturers
[NIS10].

Looking at the security of the software to be used is for users such as enterprises
and organizations an essential element in their own security architecture [The11].
When integrating software products from different manufacturers into their own
company's infrastructure it is an advantage if integrators can utilize manufacturers'
statements or assurances about their software's security features. For reasons of
effectiveness and e�ciency it is important to unify this information �ow based on a
standard.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 29

More specific suggestions and best practices regarding supply chain security for
software, and decision guidance for product evaluations and manufacturers in view
of their security processes were given by the Open Group Technology Forum in
[OTT11]. On the manufacturer side uniform approaches are missing, for example
consistent, cross-manufacturer terms or uniform and security processes over the
complete supply chain. This makes it di�cult to realize these suggestions in practice.
For security processes to function in a supply chain management comprising man-

ner the following questions need to be answered within the scope of the standards:

− How can component security requirements be derived from application security
requirements?

− How can the security features for as yet undeveloped and unintegrated compo-
nents be described simply and e�ciently?

− How can the descriptions be fashioned so that they are machine-verifiable while
remaining readable for the developers?

− How can component security features and security guarantees be described that
were developed for a clearly delineated application and specific environment?

− How can the security features and security guarantees of components be de-
scribed for which the actual use and environment is not yet known at the time
of development and deployment?

− How can it be ensured that all relevant security requirements of components are
already included at the design phase?

− How can security processes be standardized across industries and usage?

− How can the cost effectiveness of supply chain management security processes
be measured?

− How can product line aspects be included in standards?

− How can it be verified that manufacturers or suppliers comply with the stan-
dardized security processes?

− How can manufacturer or supplier violations of the standardized security pro-
cesses be traced?

− How can manufacturers provide integrators with the relevant product security
feature information for a secure implementation?

− How can integrators consolidate the information on security features given to
them by the manufacturers and combine them in a beneficial manner?

SIT Technical Reports SIT-TR-2014-03

30 · M. Waidner et al.

4.2 Challenge: Governance Framework in Distributed Development and
Integration

Governance does not play a fundamental role in software development process re-
structuring [CA11]. Since software products and integration solutions normally con-
tain software components that were developed by and purchased from third parties,
governance frameworks have to regulate how to deal with this. This includes (1) a
corporate-wide and transparent regulation of all essential aspects when dealing with
other manufacturers' software, (2) the responsibilities within this context, and (3)
accountability. A governance framework is required for software manufacturers being
able to introduce supply chain management security processes corporate-wide. This
framework should be harmonized and mandatory within an organization. It has to
describe how security processes are to be realized organizationally. The framework
has to describe the obligations and responsibilities of all those involved in distinct
and transparent regulatory structures.
For various reasons it is absolutely essential to allow the management the control

and the responsibility in the governance of an organization:

− Implementing new security processes has a strategic dimension for software
manufacturers, independent of it being supply chain management comprising
or solely within the corporation. For the manufacturer such security processes
have the potential to decrease the financial expenditures over the software's life-
cycle while improving the security level. With this in mind such a decision is
highly relevant in view of the competition with other manufacturers.

− For certain customer categories existing security procedures are an increasingly
significant aspect in their purchasing decision. Especially for manufacturers of
software that is used in regulated industries the significance of security processes
is particularly important. This involves inasmuch a strategic aspect for software
manufacturers that corporate management has to take into account.

− It is well known that security deficiencies in software may have an effect on a
manufacturer's stock market listing [TW07; Wri11]. Protecting company values
is one of upper management's most essential tasks.

− According to the EU directives EG/2006/48 and EG/2006/49 [EU 06a; EU
06b] that resulted from Basel II, the risks for companies have to be considered
when allocating loans. Developing software a�icted by security deficiencies may
therefore be risky for software manufacturers [Cre11].

− Restructuring software development processes company-wide necessitates a bud-
get that upper management has to be responsible for and provide for.

− Improving application security through security processes requires that software
architects and developers apply and realize them across teams and departments.
The organization-wide introduction of security processes along a complete supply
chain implies that all involved in software development processes will have to

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 31

implement the respective guidelines in a concerted manner. This demands upper
management level governance.

− Implementing new security processes in software development will change the
work developers are accustomed to. In practice, similarly comprehensive pro-
cesses of change are often marked by resistance aimed at retaining the status
quo. Against this background, the control and management of introducing new
security processes should be established at corporate management level.

− It is only the uppermost management level that can take on the responsibility, at
which point in time a standard (see section 4.1) shall be chosen for implementing
security processes in the organization.

− The implementation of security processes has to be managed and controlled
organization-wide.

− Establishing the framework at the uppermost management level will emphasize
the security process restructuring's significance and seriousness in the organiza-
tion.

The governance frameworks aim at providing companies with a procedure model
with which current software development can be improved and conducted by ex-
panding the security processes spanning a complete supply chain. This includes
defining new roles and their competencies and responsibilities within the organiza-
tion. To realize such procedure models, obstacles within the organization need to be
identified and removed. Based on the fact that previous approaches and practices in
software development will have to be scrutinized, put on trial and modified, oppo-
sition and frictional losses are to be expected. Transparency in governance receives
a prominent significance against this background, meaning that all involved protag-
onists will be placed in a position where they can understand the reasons for the
further development and the software development process restructuring. This also
puts demands on the metrics that are required for managing the further development
and restructuring.
To control the introduction of new supply chain management comprising security

processes, metrics are needed for identifying progress or problems. At first, suitable
metrics need to be developed with which the principal aspects can be measured as
effectively, e�ciently and objectively as possible. They help management and the
executing protagonists in recognizing whether and when the targeted goals have
been achieved. Beyond that, the control armamentarium should be su�ciently so-
phisticated to be able to make finely tuned adjustments to individual features. The
control and management armamentarium should be repeatedly applicable onto as
many departments of an organization as possible.
The governance framework needs to comprise all source relevant in the supply

chain of a software manufacturer. In particular, the governance framework must
contain recommendations on how suppliers and customers will a�rm each other
with regards to intertwining security mechanisms, how such a�rmations will be
made, and how they may be verified.

SIT Technical Reports SIT-TR-2014-03

32 · M. Waidner et al.

To achieve the best results possible from one's own software development process
restructuring investments it is necessary that third-party suppliers further develop
their processes as well and adopt the yet to be developed industry standards (see
section 4.1). Including the uppermost management level in such a restructuring will
have the favorable effect of being able to in�uence other software manufacturers
towards adopting the standards.
When developing a governance framework the following questions have to be an-

swered:

− Which rolls are needed in such a governance framework?
− Which processes does the governance framework require?
− Which specific processes does the governance framework require for which type

of externally acquired components?
− Which metrics are useful for the governance framework?
− How to increase transparency when implementing the governance framework?
− How to document the governance framework processes?
− How to organize the governance framework in order to restructure software de-

velopment processes as economically as possible?
− How do security processes with third party suppliers need to be structured at

governance level?
− How to verify objectively third party suppliers compliance with the given assur-

ances?

4.3 Challenge: Security Processes for Software Product Lines

The software industry is under massive competitive pressure. Increasing productiv-
ity and reducing development time (time to market) and development costs are very
important for long-term survival. Reusing already developed software components
is of great significance within this context.
A specific framework within which the reuse of software components may be

planned and organized systematically is inherent in the product lines. Product
lines comprise different configurations of a software product that are developed on
the basis of a common platform or common kernel for these configurations. These
platforms or kernels are then part of all the different product configurations. The
different products of a product line develop because platforms or kernels are en-
hanced at the respective variation points by features. When planning a product line
suitable variation points have to be identified at which potential further develop-
ments may be added later on. The subjects of such variabilities in product lines
are mainly requirements regarding functionality or the compatibility with the envi-
ronment. Non-functional requirements such as security are normally orthogonal to
the development axes and therefore do not have a natural equivalent in systematic
product line modeling.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 33

For the manufacturers of more complex software products reuse and product lines
play a role, as do distributed development and integration. The Security by Design
complexity increases if product line and distributed development aspects have to be
combined via supply chains.
Various perspectives are relevant when considering product line aspects and supply

chains.

(1) For the software component manufacturers as the suppliers within supply chains:
The software products developed by a supplier may represent a product within
a product line. The development of platforms or kernels as well as product con-
figurations has to be planned and implemented in such a manner by the manu-
facturer that the requirements of the respective software component customers
are being met with regard to their security processes and security features. One
di�culty in doing so is that the actual requirements of the potential customers
may not yet be fully known at the time when the product line is being designed.

(2) For software end product manufacturers and integrators that integrate software
components of various manufacturers into their own products: A software end
product that has originated from integrating the components of different man-
ufacturers may be a product that has been developed within a product line as
well. During product line design security processes and security features have
to be considered in such a way that as many relevant security requirements on
product configurations can be met as possible. The problem here is also that cer-
tain user security requirements are not yet known at the time when the product
line is being designed.

When designing product lines and platform security a multitude of security re-
quirements has to be dealt with from the very beginning. These may vary between
the different product configurations. First management systems for security re-
quirements in product lines have already been developed [MFMP09; MFMP08a;
MFMP08b; MRFMP09] to deal with the systematic handling and administration
of these security requirements. Another di�culty related to product lines is that
threat analyses and actual requirement engineering regarding security can be made
for specific use cases only when the platform, on which the product line is based,
has been implemented. This makes it possible that specific security requirements
may not have been taken into account when the platform security was designed.
It may not be ruled out that certain security requirements may not be realizable
due to the decisions made regarding the design or the platform. In individual cases
it may even be possible that the security design decided upon in a platform may
be in direct con�ict with the product's security requirements. To avoid security
vulnerabilities in products it is therefore always necessary to check the application
security requirements against the platform security features. This is also why it is
important when dealing with product lines that the security processes typical in
software development are adapted to a product line's particularities. Supporting

SIT Technical Reports SIT-TR-2014-03

34 · M. Waidner et al.

the implementation of these processes with appropriate tools should be very helpful
(see chapter 3).
A product line design has to find a good balance between future configurations'

security requirements that may need to be met and e�ciency and cost effectiveness
issues, among other things. If too strong an emphasis is placed onto potential
security requirements there is a danger of over-engineering, leading to the product
line's development costs becoming too high, which in turn will prevent to benefit
from the savings potential inherent to the product line approach.
Product lines are characterized by enabling a great number of possible software

products, if multifold variation points are available. This means that for Security by
Design many different configurations have to be considered and analyzed. Results
[BRT+13] dealing with the security of such product configurations that may be
achieved by varying pre-processor options already exist. This is a first important
step towards Security by Design in product lines. Further research has to follow,
that is not limited to the pre-processor option variation and that takes the problems
of distributed software development into account as well.
In order to take product lines' security processes and security features in dis-

tributed development into account research has to answer the following questions:

− How to fashion the security processes over the complete supply chain in software
development while taking product lines into account?

− How to design product lines in such a way that as many relevant security re-
quirements as possible can be met with a reasonable effort?

− How to deal with the security requirements of future product configurations not
yet known at the time when the security is being designed?

− How to identify special product configurations and their specific security require-
ments in product line design?

− How to fashion security analysis tools in such a way that they exploit the
common features of different products e�ciently, while identifying vulnerability
classes at the same time that arise from variability?

− How to identify effectively and e�ciently inconsistencies with a product config-
uration's later issued security requirements in a product line platform's security
design?

− How can an integrator transfer a product line platform's security requirements
into security requirements for the components manufactured by third-party sup-
pliers?

− Which documentation formats are needed for supply chain management com-
prising product line security processes?

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 35

4.4 Challenge: Security when Integrating Large Systems

In modern enterprises software systems are used in many business work �ows. They
support business processes, making them more effective, productive and accurate.
Today's companies are not competitive anymore without the appropriate software
support. Software systems have a decisive advantage when differing business pro-
cesses can share common data and when the same data and functions can be accessed
within these business processes. This allows integrating different applications, which
is also called Enterprise Application Integration (EAI). With EAI it is possible to re-
act swiftly and �exibly to new requirements by enhancing or modifying the existing
software systems. Furthermore, EAI offers enterprises the foundation for integrating
business processes beyond corporate boundaries. The potential EAI offers to com-
panies has been known for a while [Gle05]. This is true for companies from both the
manufacturing sector and the service sector as well [Xu11]. All persons responsible
for organizing IT infrastructures in enterprises have to deal with the questions and
issues of EAI. These questions and problems arise from the ever increasing degree
of integration when compared to earlier information systems that were limited to
selected functions and partial integration.
Through the high degree of integration, EAI typically results in very large and

complex systems that are customized specifically to the respective user's require-
ments, thus integrating business processes, the respective phases and configurations
of which meet an organization's particular requirements. On the technological level
differing components such as systems, applications, interfaces (for example user in-
terfaces) or data, which may be very heterogenoeus, are implemented via EAI to
form complex processes. The integration tends to be di�cult and costly, because
the components were developed using different methods for different systems, be-
cause they do not support common interfaces or because they are based on different
data models. Integrating components and subsystems that in themselves are very
heterogeneous exacts from developers and integrators a high manual effort, which
rarely follows unified, systematic and structured procedures due to the heterogene-
ity. According to estimates integrations today require more than 30% of the overall
investment users spend on their IT infrastructure [ROB11]. Benefits and effects of
utilization for an organization result from the functionality, which is why function-
ality always takes priority with EAI.
Today EAI is used intensely for Enterprise Resource Planning Systems (ERP) that

cover important business processes for enterprises [NTD12]. Beyond ERP systems,
software for Customer Relationship Mananagement (CRM), Supply Chain Manage-
ment (SCM) or cross-company business processes (B2B) is being used if required.
This software is implemented via EAI as well. In many companies universal ERP
products are being used as the basis for large software systems. These products
were developed for a wide range of users and have functionalities such as integrated
data storage, standard applications (e. g. for personnel matters, sales, accounting,
production) and general business process implementations. Beyond that there are

SIT Technical Reports SIT-TR-2014-03

36 · M. Waidner et al.

industry and branch related ERP system configurations [WXH09]. For the typical
recurring issues regarding business processes, all of these ERP systems offer solu-
tions in the form of Best Practices or established standards, and allow adequate
specializations for the respective enterprise (Customization). But in many cases the
range of functions offered by universal ERP software products does not fully cover
the users' requirements and wishes, so that additional software products are also
being integrated [SS05].

Providing services within service-oriented architectures also offers the possibility
to use functionality made available over the Internet through other provided services
[WL11]. Recommendations for the integration of services even go so far as to imple-
ment services from different providers dynamically and adaptively [MRFU11]. The
differing needs, the dynamic, the �exibility and the different technological imple-
mentations of the user-specific integration of additional components yields complex
information systems that differ immensely in their integrated conditions between
the different users, even if the same ERP products are used.

With the wide deployment of EAI the risks for the users with regard to vulnera-
bility exploitation increases substantially as well. Components or subsystems of the
systems created by EAI facilitate access to critical information. For the companies,
the large systems originating from the integration are comparable to a digital trea-
sure room, because they basically comprise all the information from the relevant
business processes. The resulting systems are highly complex, which makes it di�-
cult to assess all the implications for security. It cannot be ruled out that attackers
may gain access to data via components or subsystems, running counter to a com-
pany's security regulations. Points of origin for attacks may occur especially where
the integrated components interface. There exists for neither the initial integration
nor for the overall life cycle explicit systematic approaches and methods in the sense
of Security by Design. In practice IT security issues do not play an essential role
in integration [KT09]. Studies show that security vulnerabilities tend to develop
during integration because of very simple and avoidable errors [Kal12].

Existing systems for integration refer to the architectural level and describe how to
implement components into the overall environment and how they interact. Other
systems describe coordination models and the use of tools for integrating data and
complex processes [ROB11; Gle05; HN08]. Available research, however, does not in-
clude comprehensive security processes for integration. When security is being con-
sidered then it is usually limited to considering security standards such as the Web
Service Security standards [OAS12] as important technical elements for the secure
composition of net based services. Further propositions offer promising approaches
for improving security based on the compositional requirements and assurances de-
scriptions of the components to be integrated, for example compositional security
contracts as described in [KT09], but they have not yet been devised adequately or
transferred into practice.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 37

When integrating large systems the general conditions for Security by Design de-
pend strongly on the integration models. The spectrum of what is possible is very
large: It ranges from integrating locally available software components, which the
applying enterprise may have helped to develop, to the integration of locally installed
third-party software, and to integrating software components in the form of services
offered by third parties for access over the Internet, for example as cloud services.
When using services from third-party providers, the risk for the user increases, when
data is stored with service providers whose platform is used by many other customers
as well, customers that may possibly be attackers, potentially using vulnerabilities
to attack another user's data. Depending on the integration model the options for
Security by Design differ strongly. When developing large systems approaches and
methods should be applied to further improve and maintain the security of the re-
sulting systems over the complete life cycle, independent of the integration model
used. This also needs to factor in agility, �exibility and economical practicability for
future enhancements and adaptations in integration. To accomplish this, suitable
techniques have to be developed for the different integration models. Among other
things the following challenges will have to be mastered within this context:

− How to realize component security requirements and express them in a compre-
hensible and applicable manner?

− How to realize assurances regarding security and express them in a comprehen-
sible and applicable manner?

− To what extent do security requirements and assurances need to be treated so
that they may be applied in an economical scope for future large system changes
and modifications?

− How to derive and realize decisions systematically regarding the architecture
and design of the to be developed connective technology during integration from
the security requirements of the to be implemented overall processes and their
respective components?

− When integrating functionality as a service, how do the processes have to be
established to facilitate that the security implications for the remaining compo-
nents can be determined from the technological modifications, preferably before
the technological modifications are implemented?

− How can existing procedures for planning and coordinating integrative work be
complemented in order to facilitate Security by Design?

− How to take security aspects into consideration for the dynamic integration of
services?

− How to adapt existing service descriptions to the dynamic integration in or-
der not to select services that impinge against the security requirements of the
remaining system?

SIT Technical Reports SIT-TR-2014-03

38 · M. Waidner et al.

Software
performance,

11%

Safety
defects, 17%

Functional
capabilities, 21%

Crash-causing
defects, 22%

Security
vulnerabilities,

29%

 “How important is it to you to have visibility into the following issues of software supplied by a third party?“

Figure 7: The signi�cance of security with implemented software components that were developed
by other manufacturers (source: [For11b]): This is based on the same survey as the ones in �gures
5 and 6.

4.5 Challenge: Assurance through Security Processes

Software security is a criterion that is becoming more and more important for a user's
purchasing decision. This is particularly true for users with big market power, for
example public authorities and other government institutions, and for users from
specific industries that have to apply stricter rules, the observance of which the
organization and management are liable for.
Within this context a user is always interested in the security of the whole end

product, even if the end product contains components from different manufacturers
and suppliers. From a user's perspective, it is always the manufacturer of the end
overall product who responsible for its features, since he is the one who selected the
third party components. Accordingly manufacturers and integrators also need to
take security issues into account when deciding on suppliers or the software com-
ponents to be implemented. In such decisions, questions about security are very
important for software end product integrators and manufacturers; the results from
surveys within the software industry [For11b] demonstrate this as is shown in figure
7.
Software component customers need statements from their suppliers that allow

them to assess a component's security level. Such statements should provide an
appropriate level of detail and have binding character. In practice, though, it is
di�cult to make statements about the absolute security level of software products,
especially when software products are generated by composing parts from various
manufacturers. Information about security processes carried out at the time of the
manufacture are another alternative to assure manufacturers, integrators or users
that security aspects were taken into account during software manufacturing. Man-
ufacturers should use such assurances to make statements about the extent, and the
accuracy and diligence that were applied to specific systems to ensure security. Such
assurances are especially helpful if they can be verified in audits as unequivocally as
possible and, if breached, the transgressor has to fear negative consequences when
infringements against said assurances have been proven.
Thus assurances based on security processes provide an indirect statement on soft-

ware security. The assurance that certain security processes are adhered to during

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 39

manufacturing suggests a higher security level. Such assurances based on security
processes, for example certifying security measures during manufacturing, stand in
contrast to the certification of products, for example on the basis of Common Cri-
teria. During certification a direct statement is being made on software product
security at different assurance levels, with Common Criteria these are the Evalua-
tion Assurance Levels. Even if a direct statement on software product security, for
example using Common Criteria, seems to be more appropriate initially than indi-
rect assurances based on the manufacturing processes, practical experience presents
some arguments that speak for the indirect approach versus the direct approach.
According to [Jac06] certifications by Common Criteria are too cumbersome, time-
consuming and very expensive. Certification by Common Criteria is therefore only
used in niche areas, especially in cases where there are particularly high security
requirements, for example, because of restrictions due to regulation. According to
BSI in [BSI12] certification by Common Criteria is used for software products such
as operating systems, data bases, firewalls, PC security products, VPN products,
e-mail servers and signature application components. For application software, man-
ufacturers avoid the effort and expense caused by Common Criteria. A number of
fundamental problems play a role that result from Common Criteria and are in
con�ict with the requirements of the software manufacturing companies. Software
manufacturers tend to have serious time pressure to market their products. This time
pressure is in direct contrast to the considerable delays caused by Common Criteria.
Additionally, once software products are on the market they are usually developed
further continuously in small steps, delivered to the users within updates. How-
ever, direct certifications such as with Common Criteria imply that the assurance
is not valid anymore if a new product update or software version has been released.
Manufacturers have to pass the time-consuming and expensive certification process
again for each update and each new software version. Another important feature
of Common Criteria contradicting the application software manufacturers' require-
ments is caused by Common Criteria not supporting �exible compositions, such as
they result from composing a software product with the components from various
manufacturers. Assurances or statements regarding security features are especially
in practice a very important requirement for such products, because a very large
part of real software products combines components from different manufacturers.

The software product world today is thus split into two parts regarding assurances
about IT security features: For special products with high security requirements cer-
tificates are available that issue statements directly on a product's security features.
For typical application software without specific requirements such statements do
not exist, so there are no assurances for end product manufacturers, integrators and
users to which they might refer.

This situation could be improved by assurances regarding the security processes
used during manufacturing. It would be possible that such an assurance would still
be valid when a product is further developed with the respective security processes.

SIT Technical Reports SIT-TR-2014-03

40 · M. Waidner et al.

It would also be possible, provided adequate conditions, that assurances referring
to manufacturing processes may remain valid when composing more complex prod-
ucts. This could generate a benefit in exactly those cases in which other certification
methods such as Common Criteria may not be able to meet the practical require-
ments.
Even if assurances based on the applied security processes do not allow to generate

direct statements about security features, indirect approaches maybe very valuable,
as they can give assurances and statements about lots of products for which today
there are no usable statements on security. Beyond that studies showed, as described
in section 2.4, that the systematic application of security processes improved software
product security distinctly.
In view of the distributed development processes, software component manufac-

turers can provide end product manufacturers with assurances based on the security
processes. This requires developing a suitable framework which stipulates for the
various products sensible and precisely describable steps (for example methods for
requirements engineering, design methods, security tests) and specific criteria for the
respective procedure (e. g. considering certain relevant vulnerability compilations
such as OWASP http://www.owasp.org within the context of the web applications
that have to be taken into account in tests; frequency of tests; using accredited tools
that support developers in their programming by preventing certain programming
errors). Within this framework it is furthermore important that crucial parts of the
security process can be audited. The auditability of assurance compliance allows to
accord assurances the necessary commitment. Suppliers may otherwise simply claim
that they carry out certain processes without actually doing so.
To achieve such a commitment it should su�ce if the effort to circumvent auditable

security process is essentially the same as for implementing them. On the other
hand, the supplier needs to be sure that the solution for auditable security processes
is secure against violations that may be construed against the assurances once all
assurances have been implemented correctly.
For the framework on assurances and auditability the following issues have to be

mastered among others:

− How to determine the relevant assurances for different software components and
different areas of use in an e�cient way?

− How to verify that the relevant assurances were identified for the area of use?

− How to precisely phrase assurances?

− How to ensure that suppliers and integrators speak the same language in their
assurances?

− What repercussions do assurances have on the design of security processes?
(From various conceivable security process variants the one should be prefered
that is the most economical one to fulfill assurances)

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 41

− How to make assurances in such a way that compliance or violations are verifi-
able?

− How to recognize without a doubt assurance violations?
− How to trace violations to the originator with absolute certainty?
− How to verify assurance violations and compliance e�ciently?
− How to secure auditable assurances against deceit?
− How to reconcile assurances and the auditability of assurances with other solu-

tions for security processes spanning the complete supply chain?
− How to verify a supplier's security processes over the entire lifecycle even after

the software components have been delivered?
− How to achieve assurances by tool support?
− How can assurances based on the applied security processes be renewed when

methodology and tools are further developed?

SIT Technical Reports SIT-TR-2014-03

42 · M. Waidner et al.

5. SECURITY BY DESIGN FOR LEGACY SOFTWARE

In their book about legacy software [SPL03] Robert C. Seacord, Daniel Plakosh and
Grace A. Lewis use the term legacy crisis to demonstrate powerfully the growing
challenges regarding legacy software. Whether it is economical to continue using al-
ready existing software, or if the required functionality may need to be programmed
completely anew is a decision that has many facets. For example documentation
completeness and quality, platform independence, programming language indepen-
dence, and the comparison between the targeted and the current status of the
achieved security level. A minimum security standard is a necessary prerequisite
for software reuse or continued use.
This chapter's aim is focused on the security revision of legacy software:

A required stipulation for the reuse or continued use of legacy soft-
ware is its IT security revision; legacy software may be used only
when an adequately high security level exists for its area of use.
For a decision-making basis plausible statements have to be issued
about the present IT security level. For reuse or continued use the
software must be introduced into the security lifecycle. For the con-
tinued use of existing software it will be much easier to introduce
a higher security standard.

5.1 Challenge: Statements about the Security of Legacy Software

Given the increasing demand to integrate legacy software, statements about the
security of legacy software are urgently needed (compare also [SPL03], chapter 4
and 5). Whether the security level of legacy software may indeed be determined
remains open: Years later a single undetected programming error may turn out
to be security relevant. This does not only mean that software is basically run
insecurely, but it is even argued that it is impossible in principle to determine the
security of software [Bel06].
Even if it is not possible to ascertain the security level of software intersubjectively

and down to the last detail, it must at least be possible to make a plausible judgment
in order to be able to perform a risk assessment. Only by doing so, can it be decided
whether legacy software may be used further on or in a new context at a specific
minimum security level.
Current approaches to assess security levels are going in different directions and

there is no measurement process that is accepted as state of the art in technology
and research.
For example, at source code level these include three approaches that differ method-

ologically:

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 43

− BogoSec (source code security quality metrics) [KS06] uses instrumented test
tools for source code analysis, which are applied in combination and from which
an aggregated security level is computed.

− According to [CCZ08] the source code structure analysis generates statements
on the basis of continuous compliance with programming principles.

− Michael A. Howard, on the other hand, proposes a completely different method:
a comparative code review [How06]. Depending on the overlap rate, he assesses
the number of yet undiscovered vulnerabilities in an experimental setting with
two development teams

If the software is not yet available as source code then assessing the security
level is obviously an even bigger challenge [PC10; Sav10]. For example, it could
be checked if the � accordingly adapted � experimental setting [How06] could be a
candidate for a measurement process here as well. Can Software Penetration Testing
[ASM05] be modified in such a way that it can be used for legacy software as well
and that statements about the security level are possible? Can relevant assessment
tools [Boo09] be adapted in such a manner that they permit statements about the
achieved security level?
In view of the previously mentioned � although very promising � and diverse first

ideas, the research is still at the very beginning with regard to the measurability of
the legacy software's security level. There is a substantial need for research.
Several crucial questions remain open, for example:

− Which measurement processes represent plausible candidates for statements on
the security level of legacy software?

− Are the statements about the IT security level easy to communicate and do they
provide real decision guidance concerning the continued use or reuse of legacy
software with regard to security?

− How big is the measuring effort (time, resources)?

− When is it practical to carry out the measurement?

− Is the measurement robust, valid and intersubjectively repeatable?

5.2 Challenge: Transfer Legacy Software into the Security Lifecycle

Legacy software that is to be reused or continued to be used and is not yet in part
of the security lifecycle must be introduced into it. The full integration of legacy
software into a process where it is systematically tracked, and where vulnerabilities
are monitored and reviewed (e. g. the systematic Common Weakness Enumeration
(CWE) [MIT13]) is particularly important.
An issue that is not to be underestimated is the question of how to identify entry

points for legacy software in the respective lifecycle so that security considerations
and measures become feasible for the overall software in an integrated manner, after

SIT Technical Reports SIT-TR-2014-03

44 · M. Waidner et al.

the introductory phase. A first approach for such entry points has been given by
CLASP's Legacy Roadmap [Gra06].
With IBM Internet Security Systems Product Lifecycle Policy [IBM06] IBM has

presented a body of rules for their proprietary software's security aspects, which
has the advantage that legacy security aspects are already taken into consideration
during software manufacturing.
To introduce legacy software systematically into a security lifecycle, the following

questions need to be answered independently from manufacturers:

− How to prepare software already during its development for a later secure reuse
or continued use?

− How can manufacturers devise policies for old software reuse and continued use
that allow the links in the supply chain to integrate the old software more easily?

5.3 Challenge: Increase the Security of Legacy Software

Software that was manufactured with only little or no security issues in mind and
that will remain in use often needs to be upgraded to a (higher) security level.
Various proposals have been made to increase the security level of legacy software.
Which of these are effective and e�cient remains to be seen. A systematic analysis
and comparison is urgently needed. along with possible enhancements.
If the source code exists, most options are of course available for hardening, es-

pecially when the source code is very well documented. The spectrum ranges from
complex analyses and subsequent security hardening by experts (Source Code Re-
view), to a fully automatic hardening through source code replacements. From
an economical point of view the latter one is especially interesting. Examples for
measures on different levels:

− Incremental type security: Increasing the type security of existing programs is
a first sensible step. Gradual Typing starts with the insecure program and adds
type systems incrementally [ST07].

− Programming language related hardening: The following shows two examples
for source code related measures, one for C, one for Java. CCURED [NCH+05]
enhances the storage and type security of C source code by rewriting code in
security critical program parts. To harden Java source codes [MLD08] the other
focuses on an aspect oriented approach via Hardening Patterns.

− In legacy software, enhancements to enforce security policies may be supported
by specific program analysis tools [GJJ06]. For example by automatic code
rewriting [Ham06] applied to Managed Code of the .NET-framework. Another
example is the hardening of security policies by Web Services [MOA11] via
automatic BPEL aspect generation (Business Process Execution Language).

− Runtime Monitoring can encapsule legacy components and thus ensure that they
fulfill specific policies [Bod12].

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 45

The usual techniques for integrating black box legacy software securely [SM99]
such as system call analysis and prevention (e. g. [LRB+05] and [RHJS05]), wrap-
per, sandboxes, firewalls and instrumentation (for example by monitors) are cur-
rently receiving a promising amendment by the SecondWrite tool [OAK+11], which
overwrites code for Black Box Executables at security critical positions on the lower
system level with secure code.
It is definitely possible to increase the security level of legacy software, as has

been demonstrated there is a number of measures available for this. The following
questions need clarifying:

− How to determine with very little effort if a hardening is worthwile, or if for
example a complete reprogramming would be more expedient?

− How to categorize legacy software, so that suitable hardening measures can be
assigned to the resulting categories? For example, categories may be program-
ming languages, the software technology used, age of the software, but also the
maturity level and the completeness of the documentation.

SIT Technical Reports SIT-TR-2014-03

46 · M. Waidner et al.

6. THE FUTURE WITH SECURITY BY DESIGN

Do we really want to keep reading news about new security vulnerabilities and at-
tacks on a daily basis? Do we want to continue using software, in the manufacturing
of which security hardly played a role, even though computer and software are be-
coming more and more relevant for many areas of our everyday life? How long do
we still want to put up with this catch-up game between hackers and manufacturers,
the victims of which tend to be the users? Changing the status quo is up to the
manufacturers, the users, society, and the political establishment.
A promising way out of this situation is Security by Design. History shows that

production processes could already be modified successfully elsewhere : The chemical
industry does not discharge their untreated sewage into rivers anymore, and by now
all vehicles cause less environmental pollution because of the reduced emission of
pollutants. Similar changes should also be possible for the production processes of
secure software.
Security by Design is characterized by offering benefits for all those involved: soft-

ware becomes more secure, risks decrease, the costs for manufacturing and main-
tenance are reduced, and the manufacturing companies gain more competitiveness.
Security can become an important added value in the software manufacturing pro-
cess.
The future will be about investigating the deciding issues concerning Security by

Design and developing utilizable solutions. This involves industry, research, and
the political establishment. Large companies need to take on the leadership role,
because medium-sized software manufacturers are not capable of reorganising their
production processes under their own control.
With these ideals this trends and strategy report set a direction in which Security

by Design can and must develop. Beyond that, the report describes challenges that
have to be dealt with and problems that need to be resolved. These visions and
challenges will shape the cyber security research agenda in the coming years.
This requires the software industry, the research community, and the political

establishment to close ranks in order to produce utilizable results that are target
and application oriented, and to transfer these into practical software manufacturing.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 47

7. APPENDIX: BIBLIOGRAPHY

REFERENCES

[AAS10] Alberts, C.; Allen, J. ; Stoddard, R.: Integrated measurement and analysis
framework for software security. White Paper, SEI CERT,http://www.cert.
org/archive/pdf/10tn025.pdf, 2010

[AAS12] Allen, J.; Alberts, C. ; Stoddard, R.: Deriving Software Secu-
rity Measures from Information Security Standards of Practice. White
Paper, SEI CERT,http://www.sei.cmu.edu/library/assets/whitepapers/
derivingsecuritymeasures.pdf, 2012

[Abe10] Aberdeen Group: Security and the Software Development Lifecycle: Secure
at the Source. http://www.microsoft.com/en-us/download/confirmation.
aspx?id=6968, 2010

[Ado13] Adobe Systems Incorporated: Secure Product Lifecycle. http://www.
adobe.com/de/security/splc/. Version: 2013

[AKGL10] Apel, Sven; Kästner, Christian; Gröÿlinger, Armin ; Lengauer, Chris-
tian: Type safety for feature-oriented product lines. In: Automated Software
Engineering 17 (2010), September, Nr. 3, S. 251�300

[ASM05] Arkin, Brad; Stender, Scott ; McGraw, Gary: Software penetration test-
ing. In: IEEE Security & Privacy 3 (2005), Nr. 1, S. 84�87

[Bai12] Baize, Eric: Developing Secure Products in the Age of Advanced Persistent
Threats. In: IEEE Security & Privacy 10 (2012), Nr. 3, S. 88�92

[Bau13] Bauhaus-Projekt: Software-Architektur, Software-Reengineering und
Programmverstehen. http://www.iste.uni-stuttgart.de/ps/projekt-
bauhaus.html. Version: 2013

[BBMM10] Bruch, Marcel; Bodden, Eric; Monperrus, Martin ; Mezini, Mira: IDE
2.0: collective intelligence in software development. In: Proceedings of the
FSE/SDP workshop on Future of software engineering research (FoSER ’10),
2010

[BDL06] Basin, David; Doser, Jürgen ; Lodderstedt, Torsten: Model driven security:
From UMLmodels to access control infrastructures. In: ACM Trans. Softw. Eng.
Methodol. 15 (2006), Januar, Nr. 1, S. 39�91

[Bel06] Bellovin, S.M.: On the Brittleness of Software and the Infeasibility of Secu-
rity Metrics. In: IEEE Security & Privacy 4 (2006), Nr. 4, S. 96

[BHLM13] Bodden, Eric; Hermann, Ben; Lerch, Johnannes ; Mezini, Mira: to
appear: Reducing Human Factors in Software Security Architectures. http:
//www.future-security2013.de/. Version: 2013

[BKA11] BKA (Bundeskriminalamt): Wirtschaftskriminalität — Bun-
deslagebild 2010. http://www.bka.de/nn_193360/DE/Publikationen/
JahresberichteUndLagebilder/Wirtschaftskriminalitaet/
wirtschaftskriminalitaet__node.html?__nnn=true, 2011

SIT Technical Reports SIT-TR-2014-03

48 · M. Waidner et al.

[BKA12] BKA (Bundeskriminalamt): Cybercrime — Bundeslagebild 2011.
http://www.bka.de/DE/Publikationen/JahresberichteUndLagebilder/
Cybercrime/cybercrime__node.html?__nnn=true, 2012

[BMQS05] Beth, Thomas; Müller-Quade, Jörn ; Steinwandt, Rainer: Cryptanalysis
of a practical quantum key distribution with polarization-entangled photons. In:
Quantum Information & Computation 5 (2005), Nr. 3, S. 181�186

[BMW12a] BMWi (Bundesministerium für Wirtschaft und Technologie):
Monitoring-Report Digitale Wirtschaft 2012 — MehrWert für Deutschland.
http://www.bmwi.de/BMWi/Redaktion/PDF/Publikationen/it-gipfel-
2012-monitoring-report-digitale-wirtschaft-2012-langfassung,
property=pdf,bereich=bmwi2012,sprache=de,rwb=true.pdf, 2012

[BMW12b] BMWi (Bundesministerium für Wirtschaft und Technologie): Na-
tionaler IT-Gipfel 2012: digitalisieren_vernetzen_gründen (Essener Erk-
lärung). http://www.bmwi.de/BMWi/Redaktion/PDF/Publikationen/it-
gipfel-2012-essener-erklaerung,property=pdf,bereich=bmwi2012,
sprache=de,rwb=true.pdf, 2012

[Bod10] Bodden, Eric: E�cient Hybrid Typestate Analysis by Determining
Continuation-Equivalent States. In: ICSE ’10: International Conference on
Software Engineering, 2010, 5�14

[Bod12] Bodden, Eric: Project RUNSECURE. http://www.ec-spride.tu-
darmstadt.de/csf/sse/projects_sse/emmy_noether/emmy_noether.en.jsp,
2012

[Boo09] Booz Allen Hamilton: Software Security Assessment Tools Review, März
2009

[BPW07] Backes, Michael; Pfitzmann, Birgit ; Waidner, Michael: The reactive
simulatability (RSIM) framework for asynchronous systems. In: Inf. Comput.
205 (2007), Nr. 12, S. 1685�1720

[BRT+13] Bodden, Eric; Ribeiro, Márcio; Tolêdo, Társis; Brabrand, Claus; Borba,
Paulo ; Mezini, Mira: SPLLIFT�Statically Analyzing Software Product Lines
in Minutes Instead of Years. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2013

[BS11] Bunke, Michaela; Sohr, Karsten: An architecture-centric approach to detect-
ing security patterns in software. In: Engineering Secure Software and Systems.
Springer, 2011, S. 156�166

[BSI06] BSI (Bundesamt für Sicherheit in der Informationstechnik): M 2.378
System-Entwicklung. https://www.bsi.bund.de/DE/Themen/ITGrundschutz/
ITGrundschutzKataloge/Inhalt/_content/m/m02/m02378.html.
Version: 2006

[BSI12] BSI (Bundesamt für Sicherheit in der Informationstechnik): Zerti-
fizierte IT-Sicherheit. https://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/Publikationen/Broschueren/ZertIT/zertifizierte-IT.pdf?__blob=
publicationFile, Oktober 2012

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 49

[BSI13] BSI (Bundesamt für Sicherheit in der Informationstechnik): Lageberichte
des Bundesamts für Sicherheit in der Informationstechnik (BSI). https://www.
bsi.bund.de/DE/Publikationen/Lageberichte/lageberichte_node.html,
Januar 2013

[CA11] Chess, B.; Arkin, B.: Software Security in Practice. In: IEEE Security &
Privacy 9 (2011), March-April, Nr. 2, S. 89�92

[Can01] Canetti, Ran: Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In: Proceedings of FOCS 2001, 2001, S. 136�145. �
Revised version online available at http://eprint.iacr.org/2000/067

[CCZ08] Chowdhury, Istehad; Chan, Brian ; Zulkernine, Mohammad: Security
metrics for source code structures. In: Proceedings of the fourth international
workshop on Software engineering for secure systems (SESS ’08), 2008

[Chr11] Christley, Steve: CWE//SANS Top 25 Most Dangerous Software Errors.
http://cwe.mitre.org/top25/, 2011

[Cov13] Coverity: Annual Coverity Scan Report. http://softwareintegrity.
coverity.com/register-for-the-coverity-2012-scan-report.html.
Version: 2013

[Cre11] Creative Intellect Consulting: Failure to invest in secure software delivery
puts businesses at risk. businesswire, http://www.businesswire.com/news/
home/20110223006536/en/Failure-Invest-Secure-Software-Delivery-
Puts-Businesses, Februar 2011

[DKM+12] Dallmeier, Valentin; Knopp, Nikolai; Mallon, Christoph; Fraser, Gordon;
Hack, Sebastian ; Zeller, Andreas: Automatically Generating Test Cases for
Specification Mining. In: IEEE Trans. Softw. Eng. 38 (2012), März, Nr. 2, S.
243�257

[DMN12] DMN (Deutsche Mittelstands Nachrichten): Angriff auf Online-Banking:
Hacker stehlen 36 Millionen Euro von Privatkunden. http://www.deutsche-
mittelstands-nachrichten.de/2012/12/48673/, 2012

[DPP12] Denney, Ewen; Pai, Ganesh ; Pohl, Josef: Heterogeneous Aviation Safety
Cases: Integrating the Formal and the Non-formal. In: Proceedings of the 2012
IEEE 17th International Conference on Engineering of Complex Computer Sys-
tems (ICECCS ’12), IEEE Computer Society, 2012, S. 199�208

[ECGN01] Ernst, Michael D.; Cockrell, Jake; Griswold, William G. ; Notkin, David:
Dynamically discovering likely program invariants to support program evolution.
In: IEEE Transactions on Software Engineering 27 (2001), Februar, Nr. 2, S.
99�123

[EU 06a] EU (Europäische Union): RICHTLINIE 2006/48/EG DES EUROPÄIS-
CHEN PARLAMENTS UND DES RATES vom 14. Juni 2006 über die Auf-
nahme und Ausübung der Tätigkeit der Kreditinstitute. Amtsblatt der Europäis-
chen Union L 177/1, 2006

[EU 06b] EU (Europäische Union): RICHTLINIE 2006/49/EG DES EUROPÄIS-
CHEN PARLAMENTS UND DES RATES vom 14. Juni 2006 über die

SIT Technical Reports SIT-TR-2014-03

50 · M. Waidner et al.

angemessene Eigenkapitalausstattung von Wertpapierfirmen und Kreditinsti-
tuten. Amtsblatt der Europäischen Union L 177/201, 2006

[FAR+13] Fritz, Christian; Arzt, Steven; Rasthofer, Siegfried; Bodden, Eric; Bartel,
Alexandre; Klein, Jacques; le Traon, Yves; Octeau, Damien ; McDaniel, Patrick:
Highly Precise Taint Analysis for Android Applications. Technical Report. http:
//www.bodden.de/pubs/TUD-CS-2013-0113.pdf, Mai 2013

[FIB13] Frost & Sullivan; (ISC)2 ; Booz Allen Hamilton: The 2013 (ISC)2 Global In-
formation Security Workforce Study. https://www.isc2.org/workforcestudy/
Default.aspx, 2013

[For11a] Forrester Consulting: State of Application Security. http://www.
microsoft.com/en-us/download/confirmation.aspx?id=2629, 2011

[For11b] Forrester Research: Software Integrity Risk Report — The Critical Link
Between Business Risk And Development Risk. http://www.coverity.com/
library/pdf/Software_Integrity_Risk_Report.pdf, April 2011

[FPP12] Fichtinger, Barbara; Paulisch, Frances ; Panholzer, Peter: Driving Secure
Software Development Experience in a Diverse Product Environment. In: IEEE
Security & Privacy 10 (2012), Nr. 2, S. 97�101

[GJJ06] Ganapathy, V.; Jaeger, T. ; Jha, S.: Retrofitting legacy code for authoriza-
tion policy enforcement. In: 2006 IEEE Symposium on Security and Privacy,
2006

[Gle05] Gleghorn, Rodney: Enterprise Application Integration: A Manager's Per-
spective. In: IT Professional 7 (2005), November, Nr. 6, S. 17�23

[Gra06] Graham, Dan: The CLASP Application Security Process.
https://buildsecurityin.us-cert.gov/bsi/100/version/1/part/4/data/
CLASP_ApplicationSecurityProcess.pdf?branch=main&language=default,
2006

[Ham06] Hamlen, Kevin: Security policy enforcement by automated program-
rewriting. Ithaca, NY, USA, Diss., 2006

[hei08] heise Online: Schwache Krypto-Schlüssel unter Debian, Ubuntu und Co.
http://www.heise.de/security/meldung/Schwache-Krypto-Schluessel-
unter-Debian-Ubuntu-und-Co-207332.html. Version:Mai 2008

[hei11] heise Security: Angriff auf Playstation Network: Persönliche Daten von
Millionen Kunden gestohlen. http://www.heise.de/security/meldung/
Angriff-auf-Playstation-Network-Persoenliche-Daten-von-Millionen-
Kunden-gestohlen-1233136.html, April 2011

[hei12a] heise Security: Chinesische Hacker gingen bei Nortel ein und aus.
http://www.heise.de/security/meldung/Chinesische-Hacker-gingen-
bei-Nortel-ein-und-aus-1433741.html. Version: 2012

[hei12b] heise Security: Immer mehr EU-Bürger haben Angst vor Cyber-
Kriminalität. http://www.heise.de/security/meldung/Immer-mehr-EU-
Buerger-haben-Angst-vor-Cyber-Kriminalitaet-1635864.html, Juli 2012

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 51

[hei13] heise Security: Schwerwiegende Sicherheitslücke bei Amazon. http:
//www.heise.de/security/meldung/Schwerwiegende-Sicherheitsluecke-
bei-Amazon-1786722.html, Januar 2013

[HHH12] Hollunder, B.; Herrmann, M. ; Hülzenbecher, A.: Design by Contract
for Web Services: Architecture, Guidelines, and Mappings. In: International
Journal On Advances in Software 5 (2012), Nr. 1 and 2, S. 53�64

[HL06] Howard, Michael; Lipner, Steve: The Security Development Lifecycle. Red-
mond, WA, USA : Microsoft Press, 2006

[HN08] Haase, Thomas; Nagl, Manfred: Service-Oriented Architectures and Ap-
plication Integration. In: Collaborative and Distributed Chemical Engineering.
From Understanding to Substantial Design Process Support - Results of the IM-
PROVE Project Bd. 4970. Springer, 2008, S. 727�740

[How06] Howard, Michael: A Process for Performing Security Code Reviews. In:
IEEE Security & Privacy 4 (2006), Juli, Nr. 4, S. 74�79

[HS09] Hammer, Christian; Snelting, Gregor: Flow-Sensitive, Context-Sensitive,
and Object-sensitive Information Flow Control Based on Program Dependence
Graphs. In: International Journal of Information Security 8 (2009), Dezember,
Nr. 6, S. 399�422

[IBM06] IBM: IBM Internet Security Systems Product Lifecycle Pol-
icy. http://www-935.ibm.com/services/us/iss/pdf/support_product_
lifecycle_policy.pdf. Version: June 2006

[IBM12] IBM: IBM X-Force 2012 Mid-year Trend and Risk Report. http://www-
935.ibm.com/services/us/iss/xforce/trendreports/, September 2012

[ISO11] ISO (International Standardization Organisation): Security management
systems for the supply chain – Development of resilience in the supply chain
– Requirements with guidance for use. http://www.iso.org/iso/home/store/
catalogue_ics/catalogue_detail_ics.htm?csnumber=56087, 2011

[Jac06] Jackson, Joab: Symantec: Common Criteria is bad for you.
http://gcn.com/Articles/2007/05/04/Symantec-Common-Criteria-is-
bad-for-you.aspx?p=1, 2006

[Jür02] Jürjens, Jan: UMLsec: Extending UML for Secure Systems Development.
In: Proceedings of the 5th International Conference on The Unified Modeling
Language (UML ’02), 2002

[JYB08] Jürjens, Jan; Yu, Yijun ; Bauer, Andreas: Tools for traceable security
verification. In: Proceedings of the 2008 international conference on Visions of
Computer Science: BCS International Academic Conference (VoCS’08), 2008,
367�378

[Kal12] Kallus, Michael: 5 Sicherheitsschwachstellen in SAPSystemen. CIO Maga-
zin http://www.cio.de/2889344, August 2012

[KS06] Kirkland, Dustin; Salem, Loulwa: BogoSec: Source Code Security Quality
Calculator. http://sourceforge.net/projects/bogosec/, März 2006

SIT Technical Reports SIT-TR-2014-03

52 · M. Waidner et al.

[KT09] Khan, Khaled M.; Tan, Calvin: SecCom: A Prototype for Integrating
Security-Aware Components. In: Information Systems: Modeling, Develop-
ment, and Integration, Third International United Information System Confer-
ence, UNISCON 2009, Sydney, Australia, April 21-24, 2009. Proceedings Bd. 20,
Springer, 2009 (Lecture Notes in Business Information Processing), S. 393�403

[LBD02] Lodderstedt, Torsten; Basin, David A. ; Doser, Jürgen: SecureUML: A
UML-Based Modeling Language for Model-Driven Security. In: Proceedings of
the 5th International Conference on The Unified Modeling Language (UML ’02),
2002

[Loc12] Lochbihler, Andreas: A Machine-Checked, Type-Safe Model of Java Con-
currency : Language, Virtual Machine, Memory Model, and Verified Compiler,
Karlsruher Institut für Technologie, Fakultät für Informatik, Diss., Juli 2012

[LPT06] Lapadula, A.; Pugliese, R. ; Tiezzi, F.: A WSDL-based type system for
WS-BPEL. In: Coordination Models and Languages Springer, 2006, S. 145�163

[LRB+05] Linn, C. M.; Rajagopalan, M.; Baker, S.; Collberg, C.; Deinsty, S. K. ;
Hartman, J. H.: Protecting against unexpected system calls. In: In Proceedings
of the 14th USENIX Security Symposium, 2005, S. 239�254

[LSP+11] Ladd, David; Simorjay, Frank; Pulikkathara, Georgeo; Jones, Jeff; Miller,
Matt; Lipner, Steve ; Rains, Tim: The SDL Progress Report. http://www.
microsoft.com/en-us/download/details.aspx?id=14107, 2011

[LSS11] Lund, Mass S.; Solhaug, Bjørnar ; Stølen, Ketil: Model-Driven Risk Anal-
ysis - The CORAS Approach. Springer, 2011

[McG06] McGraw, Gary: Building Secure Software. Addison Wesley Professional
Computing, 2006

[MDAB10] Murdoch, Steven J.; Drimer, Saar; Anderson, Ross J. ; Bond, Mike:
Chip and PIN is Broken. In: IEEE Symposium on Security and Privacy (S&P
2010), 2010

[MFMP08a] Mellado, D.; Fernández-Medina, E. ; Piattini, M.: Security Require-
ments Variability for Software Product Lines. In: Third International Confer-
ence on Availability, Reliability and Security(ARES ’08), 2008, S. 1413�1420

[MFMP08b] Mellado, Daniel; Fernández-Medina, Eduardo ; Piattini, Mario: To-
wards security requirements management for software product lines: A security
domain requirements engineering process. In: Computer Standards & Interfaces
30 (2008), Nr. 6, S. 361�371

[MFMP09] Mellado, Daniel; Fernández-Medina, Eduardo ; Piattini, Mario: Se-
curity Requirements Management in Software Product Line Engineering. In:
e-Business and Telecommunications, International Conference, ICETE 2008,
Porto, Portugal, July 26-29, 2008, Revised Selected Papers, 2009

[Mic10] Microsoft: Secure Development Lifecycle — Simplified Implementation
of the Microsoft SDL. http://download.microsoft.com/download/F/7/D/
F7D6B14F-0149-4FE8-A00F-0B9858404D85/Simplified%20Implementation%
20of%20the%20SDL.doc, 2010

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 53

[Mic13a] Microsoft: Microsoft Security Development Lifecycle Tools. http://www.
microsoft.com/security/sdl/adopt/tools.aspx, Januar 2013

[Mic13b] Microsoft: SDL Helps Build More Secure Software. http://www.
microsoft.com/security/sdl/learn/measurable.aspx, 2013

[MIT13] MITRE: Common Weakness Enumeration. http://sourceforge.net/
projects/bogosec/, Februar 2013

[MLD08] Mourad, Azzam; Laverdière, Marc-André ; Debbabi, Mourad: An aspect-
oriented approach for the systematic security hardening of code. In: Computers
and Security 27 (2008), Nr. 3-4, S. 101 � 114

[MM08] Manuj, Ila; Mentzer, John T.: Global Supply Chain Risk Management. In:
Journal of Business Logistics 29 (2008), Nr. 1, S. 133�155

[MOA11] Mourad, A.; Otrok, H. ; Ayoubi, S.: Toward Systematic Integration of
Security Policies into Web Services. In: 2011 European Intelligence and Security
Informatics Conference (EISIC), 2011, S. 220 �223

[MRFMP09] Mellado, Daniel; Rodriguez, J.; Fernández-Medina, E. ; Piattini, M.:
Automated Support for Security Requirements Engineering in Software Prod-
uct Line Domain Engineering. In: International Conference on Availability,
Reliability and Security,(ARES ’09), 2009, S. 224�231

[MRFU11] Mukhija, Arun; Rosenblum, David S.; Foster, Howard ; Uchitel, Se-
bastián: Runtime Support for Dynamic and Adaptive Service Composition.
In: Rigorous Software Engineering for Service-Oriented Systems - Results of the
SENSORIA Project on Software Engineering for Service-Oriented Computing
Bd. 6582. Springer, 2011, S. 585�603

[MWC10] Mettler, Adrian; Wagner, David ; Close, Tyler: Joe-E: A Security-
Oriented Subset of Java. http://joe-e.org/, 2010

[NCH+05] Necula, George C.; Condit, Jeremy; Harren, Matthew; McPeak, Scott ;
Weimer, Westley: CCured: type-safe retrofitting of legacy software. In: ACM
Trans. Program. Lang. Syst. 27 (2005), Mai, Nr. 3, S. 477�526

[NIS10] NIST (National Institute for Standards): Guide for Applying the
Risk Management Framework to Federal Information Systems — A Se-
curity Life Cycle Approach. NIST Special Publication 800-37 Rev.
1, http://csrc.nist.gov/publications/nistpubs/800-37-rev1/sp800-37-
rev1-final.pdf, Februar 2010

[NTD12] Nazemi, Eslam; Tarokh, Mohammad J. ; Djavanshir, G.Reza: ERP: A
Literature Survey. In: The International Journal of Advanced Manufacturing
Technology 61 (2012), S. 999�1018

[Nü12] Nüsse, Andrea: Revolution per Kurznachricht. http://www.zeit.de/
politik/ausland/2012-01/aegypten-revolution-jahrestag, Januar 2012

[OAK+11] O'Sullivan, Pádraig; Anand, Kapil; Kotha, Aparna; Smithson, Matthew;
Barua, Rajeev ; Keromytis, AngelosD: Retrofitting Security in COTS Soft-
ware with Binary Rewriting. In: Future Challenges in Security and Privacy for
Academia and Industry Bd. 354. Springer Berlin Heidelberg, 2011

SIT Technical Reports SIT-TR-2014-03

54 · M. Waidner et al.

[OAS12] OASIS Web Services Security Maintenance TC: Web Services Security
v1.1.1. OASIS Standards, https://www.oasis-open.org/standards#wssv1.
1.1, Mai 2012

[ON98] Oheimb, David von; Nipkow, Tobias: Machine-checking the Java Specifica-
tion: Proving Type-Safety. In: Formal Syntax and Semantics of JAVA, Springer,
1998, S. 119�156

[Ope13] OpenSAMM: Open Software Assurance Maturity Model. http://www.
opensamm.org/. Version: 2013

[OTT11] OTTF (The Open Group Trusted Technology Forum): Open Trusted
Technology Provider Framework (O-TTPF) — Industry Best Practices for Man-
ufacturing Technology Products that Facilitate Customer Technology Acquisi-
tion Risk Management Practices and Options for Promoting Industry Adoption.
http://www.opengroup.org/ottf, Februar 2011

[PC10] P�eeger, S.L.; Cunningham, R.K.: Why Measuring Security Is Hard. In:
IEEE Security & Privacy, 8 (2010), Nr. 4, S. 46�54

[RBG12] Reischuk, Raphael M.; Backes, Michael ; Gehrke, Johannes: SAFE Ex-
tensibility for Data-Driven Web Applications. In: WWW’12: Proceedings of the
21st International Conference on World Wide Web. Lyon, France, 2012

[RGWS08] Reichenbach, Gerold; Göbel, Ralf; Wolff, Hartfrid ; Stokar von Neu-
forn, Silke: Risiken und Herausforderungen für die öffentliche Sicherheit in
Deutschland — Grünbuch des Zukunftsforums Öffentliche Sicherheit — Szenar-
ien und Leitfragen. http://www.zukunftsforum-oeffentliche-sicherheit.
de/downloads/Gruenbuch_Zukunftsforum.pdf, 2008

[RHJS05] Rajagopalan, Mohan; Hiltunen, Matti; Jim, Trevor ; Schlichting, Richard:
Authenticated System Calls. In: In Proc. IEEE International Conference on
Dependable Systems and Networks (DSN2005), 2005

[ROB11] Rodrigues, Nuno; Oliveira, Nuno ; Barbosa, Luís S.: The role of coordi-
nation analysis in software integration projects. In: On the Move to Meaningful
Internet Systems (OTM 2011) Bd. LNCS 7046, Springer-Verlag, October 2011,
S. 83�92

[RRDO10] Rescorla, E.; Ray, M.; Dispensa, S. ; Oskov, N.: Transport Layer Security
(TLS) Renegotiation Indication Extension. RFC 5746 (Proposed Standard).
http://www.ietf.org/rfc/rfc5746.txt. Version: Februar 2010

[SAF07] SAFECode (Software Assurance Forum for Excellence in Code): SAFE-
Code. http://www.safecode.org/index.php, 2007

[Sav10] Savola, Reijo: On the Feasibility of Utilizing Security Metrics in Software-
Intensive Systems. In: IJCSNS International Journal of Computer Science and
Network Security, VOL.10 No.1 (2010)

[Sch11] Schur, Matthias: Experimental specification mining for enterprise appli-
cations. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering,(ESEC/FSE ’11),
2011

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 55

[SLE05] Saitta, P.; Larcom, B. ; Eddington, M.: Trike v. 1 methodology docu-
ment. (2005). http://www.octotrike.org/papers/Trike_v1_Methodology_
Document-draft.pdf

[SM99] Souder, T.; Mancoridis, S.: A tool for securely integrating legacy systems
into a distributed environment. In: Proceedings. Sixth Working Conference on
Reverse Engineering, 1999, S. 47 �55

[Spi12] Spiegel Online: Industriespionage bei Nortel — Chinesische Hacker sollen
Tech-Konzern ausgeplündert haben. http://www.spiegel.de/netzwelt/
web/industriespionage-bei-nortel-chinesischehacker-sollen-tech-
konzern-ausgepluendert-haben-a-815102.html, 2012

[Spi13] Spiegel Online: Monatelanger Angriff — Chinesische Hacker spähten „New
York Times” aus. http://www.spiegel.de/netzwelt/netzpolitik/new-
york-times-monatelange-angriffechinesischer-hacker-a-880654.html,
2013

[SPL03] Seacord, R.C.; Plakosh, D. ; Lewis, G.A.: Modernizing legacy systems:
software technologies, engineering processes, and business practices. Addison-
Wesley Professional, 2003

[SRM+09] Simpson, Stacy; Reddy, Dan; Minnis, Brad; Fagan, Chris; McGuire,
Cheri; Nicholas, Paul; Baldini, Diego; Uusilehto, Janne; Bitz, Gunter; Karab-
ulut, Yuecel ; Phillips, Gary: Software Supply Chain Integrity Framework —
Defining Risks and Responsibilities for Securing Software in the Global Sup-
ply Chain. SAFECode Publication, http://www.safecode.org/publications/
SAFECode_Supply_Chain0709.pdf, 2009

[SS05] Schelp, Joachim; Schwinn, Alexander: Extending the business engineering
framework for application integration purposes. In: Proceedings of the 2005
ACM Symposium on Applied Computing (SAC), 2005, S. 1333�1337

[ST07] Siek, J.; Taha, W.: Gradual typing for objects. In: ECOOP 2007–Object-
Oriented Programming (2007), S. 2�27

[Tas02] Tassey, Gregory: The economic impacts of inadequate infrastructure for
software testing. NIST (National Institute of Standards and Technology), Plan-
ning Report 02-3, 2002

[The11] The Open Group TOGAF-SABSA Integration Working Group: TOGAF
and SABSA Integration — How SABSA and TOGAF complement each other
to create better architectures. White Paper, Reference W117, https://www2.
opengroup.org/ogsys/catalog/w117, Oktober 2011

[TW07] Telang, Rahul; Wattal, Sunil: Impact of Software Vulnerability Announce-
ments on the Market Value of Software Vendors � An Empirical Investigation.
In: Workshop on the Economics of Information Security (WEIS’07), 2007

[VK11] Vorgang, Blair R.; Karry, Alec: Addressing Software Security in the Federal
Acquisition Process. Cigital White Paper, https://www.cigital.com, 2011

[WAZ12] WAZ: Hacker nutzen immer öfter Sicherheitslücken bei Behörden.
http://www.derwesten.de/wirtschaft/digital/hacker-nutzen-immer-

SIT Technical Reports SIT-TR-2014-03

56 · M. Waidner et al.

oefter-sicherheitsluecken-bei-behoerdenid6408800.html, Februar 2012
[WL11] Wu, Zhuang; Li, Yan: Research on enterprise application integration based

on Web. In: 2011 International Conference on Mechatronic Science, Electric
Engineering and Computer (MEC), 2011, S. 2221 �2224

[WLL08] Williams, Zachary; Lueg, Jason E. ; LeMay, Stephen A.: Supply chain
security: an overview and research agenda. In: International Journal of Logistics
Management 19 (2008), August, Nr. 2, S. 254�282

[WOUK12] Wataguchi, Yoshiro; Okubo, Takao; Unno, Yukie ; Kanaya, Nobuyuki:
Cooperative Secure Integration Process for Secure System Development. In:
15th International Conference on Network-Based Information Systems (NBiS
2012), 2012, S. 782�786

[Wri11] Wright, Craig S.: Software, Vendors and Reputation: An Analysis of the
Dilemma in Creating Secure Software. In: Trusted Systems - Second Interna-
tional Conference, INTRUST 2010, Revised Selected Papers Bd. LNCS 6802,
Springer, 2011, S. 346�360

[WXH09] Wu, Shi L.; Xu, Lida ; He, Wu: Industry-oriented enterprise resource
planning. In: Enterprise Information Systems 3 (2009), Nr. 4, S. 409�424

[Xu11] Xu, Li D.: Enterprise Systems: State-of-the-Art and Future Trends. In:
IEEE Transactions on Industrial Informatics 7 (2011), Nr. 4, S. 630�640

[Zel07] Zeller, Andreas: The Future of Programming Environments: Integration,
Synergy, and Assistance. In: 2007 Future of Software Engineering(FOSE ’07),
2007

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design · 57

ACKNOWLEDGEMENTS

This trends and strategy report has been supported by the German Federal Ministry
of Education and Research (BMBF) in the context of the competence centers for
Cybersecurity

− European Center for Security and Privacy by Design (EC SPRIDE, http://
www.ec-spride.de),

− Center for IT-Security, Privacy and Accountability (CISPA, http://www.cispa-
security.de) und

− Competence Center for Applied Security Technology (KASTEL, http://www.
kastel.kit.edu)

The authors express their deepest gratitude to the German Federal Ministry of
Education and Research for this support.
Furthermore they thank Mr. Thomas Caspers from the Federal O�ce for Informa-

tion Security (BSI) for his valuable suggestions. Also they thank Anne Grauenhorst
(CASED und EC SPRIDE), Alex Wöhnl (EC SPRIDE), Viktoriia Kunetska (EC
SPRIDE) and Sarah Ahmed (CASED) for their support. For their support with the
English translation of this report the authors thank Thomas Eldridge (CASED),
Matthew Elverson (CASED) and Ben Hermann (CASED and EC SPRIDE).

SIT Technical Reports SIT-TR-2014-03

58 · M. Waidner et al.

SIT Technical Reports SIT-TR-2014-03

Development of Secure Software with Security by Design 59

Competence Centers for Cybersecurity

In order to take on the large challenges in Cybersecurity, the German Federal Min-
istry of Education and Research (BMBF) chose three competence centers: CISPA,
EC SPRIDE and KASTEL. They combine the excellence of the best universities and
research facilities in the field of Cybersecurity research both thematically and orga-
nizationally. The competence centers are funded by the German Federal Ministry
of Education and Research (BMBF) since 2011. Despite the centers all working on
different areas of the the field they are strongly cooperating.

D
ar

m
st

ad

t Karlsruhe

Saarbrücken

Security

 Privacy

A
ccountability

Analyse

Design Integration

Cloud Computing
Embedded Systems

Smart Devices
Smart Home
Smart Energy

C ISPA
Center for IT-Security, Privacy
and Accountability

Figure 8: The competence centers for cybersecurity

SIT Technical Reports SIT-TR-2014-03

60 · M. Waidner et al.

CISPA (Saarbrücken)

The �Center for IT-Security, Privacy and Accountability� (CISPA) aims to develop
a holistic approach to solve the central IT Security issues of the digital society.
It combines basic research for the analysis of existing and the discovery of new
approaches with their systematic advancement into a universal toolbox of deployable
security technologies for complex systems. CISPA's core topics are reliable security,
accountability, and privacy.

EC SPRIDE (Darmstadt)

The �European Center for Security and Privacy by Design� (EC SPRIDE) researches
into how IT developers can optimally secure software and IT systems from the very
beginning � i.e. �by Design� � and throughout the entire lifecycle. The researchers
in the Engineering, Building Blocks and Blueprint research areas compile the basic
knowledge and create new development and testing methods for ensuring optimal
software security. In doing so, they also take the latest technical and social devel-
opments into consideration as relevant practical parameters.

KASTEL (Karlsruhe)

The Competence Center for Applied Security Technology (KASTEL) researches into
how secure applications can be developed in one integrated process. Innovative solu-
tions will be demonstrated by three prototypes in areas that are highly relevant for
our society: Cloud Computing, Smart Energy and privacy protecting camera surveil-
lance. To achieve this, researchers from computer science will closely cooperate with
Economic Sciences and Law. The center aims to turn away from isolated partial so-
lutions and instead develop an integrated approach that combines competencies and
methods from different disciplines.

SIT Technical Reports SIT-TR-2014-03

9 783839 607688

ISBN 978-3-8396-0768-8

