
EmErging TrEnds in sofTwarE
dEvElopmEnT & implicaTions for
iT sEcuriTy: an ExploraTivE sTudy 06/2014

EmErging TrEnds in sofTwarE dEvElopmEnT
& implicaTions for iT sEcuriTy:
an ExploraTivE sTudy

carsTEn ochs

EC SPRIDE, TU Darmstadt

Mornewegstrasse 30, 64293 Darmstadt

www.ec-spride.de, www.informatik.tu-darmstadt.de

Ed. Michael Waidner

SIT Technical Reports

SIT-TR-2014-02

June 2014

Fraunhofer Institute for Secure

Information Technology SIT

Rheinstrasse 75

64295 Darmstadt

Germany

SIT Technical Report

SIT-TR-2014-02

Emerging Trends in Software Development &

Implications for IT Security: An Explorative Study

Carsten Ochs

ISSN 2192-8169

Editor

Michael Waidner

design
Elena Vituschek

photograph credit
Fraunhofer SIT

Editor‘s address

Fraunhofer Institute for Secure

Information Technology SIT

Public Relations

Rheinstrasse 75

64295 Darmstadt

Germany

Telephone: +49 6151 869-399

Fax +49 6151 869-224

info@sit.fraunhofer.de

www.sit.fraunhofer.de

Copyright and the use of text extracts is prohibited without

permission from the editor.

© June 2014

ImprInt

1. inTroducTion 8

2. rEsEarch procEdurE 10

3. rEsulTs i.: ThE currEnT sofTwarE/iT sEcuriTy 12
 world according To ExpErTs

 3.1. Software Characteristics 12
 3.2. General IT Security Situation 15

4. rEsulTs ii.: TrEnds in sofTwarE dEvElopmEnT & iT 18
 sEcuriTy implicaTions

 4.1. SD‘s Working Environment: Dynamic, Flexible, Distributed 18
 4.2. Agile Software Development 23
 4.3. Code Generation and Assembly of (Prefabricated) Code 32
 4.4. Compositional Systems and Modularization 37
	 4.5.	 Distributed	Systems	and	Intensified	(Cross	Domain)	Networking	 41
 4.6. Legacy: The Complexity of Evolved Software Ecosystems 44

5. synopsis and conclusion: TrEnds in sofTwarE 49
 dEvElopmEnT and fuTurE challEngEs for iT sEcuriTy

6. rEfErEncEs 52

contents

5

executIve summary

There have been numerous transformations in the interrelated

realms of software development (SD) and IT security. To

form a clear picture of the SD trends and account for their

implications, we conducted an explorative study comprising

23 interviews with SD and IT security experts from industry,

academia and regulating institutions. The analysis reveals six

major trends:

1. sd’s working Environment: dynamic, flexible,

distributed

The acceleration, fluctuation of cooperating partners, distribu-

tion of production sites and complexity of supply chains call

for finding ways to build continuity into SD processes. To

guarantee developers have a shared vision, companies must

invest significantly in proper communication and enable team

members to build strong relationships so as to be clear about

product security relevant requirements. Companies are well

advised to establish long-term and trustable relationships with

outsourcing partners and to abstain from outsourcing critical

components. Harmonizing tools, frameworks and Integrated

Development Environment (IDE) with the outsourcing partner

may reduce compatibility issues. In general, the complexity of

supply chains calls for improved techniques to measure and

certify components.

2. widespread adoption of agile software development

Agile SD is oftentimes portrayed as a way to adapt to a rapidly

changing environment. As teams and team roles become

flexible, agile SD raises the level of IT security expertise any

individual developer needs to have. The latter must not be

overburdened with security considerations, though. Therefore,

agile SD makes it even more important to integrate security

processes systematically and make security expertise scalable.

While agile SD is about adapting to rapidly changing circum-

stances forced by market pressure, software systems tend to

run for quite a while. This makes it mandatory to preserve

expertise and knowledge and to trace decisions that went

into system construction. Last but not least, usability should

be taken seriously as a security factor. Agile SD allows the

integration of »laymen expertise« right from the beginning by

involving customers/end users.

3. code generation and assembly of (prefabricated) code

There is a certain »democratization« of SD allowing developers

without formal engineering education to create code. To make

sure secure code is being generated by laymen, security must

be factored into self-learning platforms and code generators.

In industrial SD, security should be automated by integrating

security features into Integrated Development Environments,

frameworks and libraries. The latter devices must be equipped

with tools that allow for testing and generating secure

building blocks. Developers must be able to keep a consistent

relation between modeling and source code level (round-trip

engineering) and to make informed decisions when selecting a

framework. This presupposes framework security certification.

As there is more sharing of code (on the web, etc.), developers

should have acquired the skills to check such code for security,

whereas companies may consider formulating sharing policies.

As the phenomenon of crowdsourcing software development

gains a foothold, research is called upon to investigate security

implications.

6

4. compositional systems and modularization

Compositionality and modularization entails a profound para-

digm change as regards security. Study participants mentioned

a range of measures that companies may take to increase the

probability of producing secure compositional systems, such as

no integration of external components as a black box; rigorous

testing of security relevant components and raising security

relevant parameters; continuous integration of new features

or code portions; a clear understanding of the integrated

component’s code; checking and safeguarding the compat-

ibility of the in-house code base with external code; reducing

the attack surface by deactivating the external component’s

functionalities that are not in use; etc. In the future it will be

desirable to dispose of the formal specifications of the com-

ponents’ characteristics and automatable testing procedures

and specifications of valid indicators concerning the static

and dynamic quality and security attributes of compositional

systems. This should be done in order to enable certification

and legal guarantees of a component’s security. Preferably,

R&D manages to produce intrinsically secure building blocks/

components guaranteeing secure compositional systems.

5. Distributed Systems and Intensified (Cross Domain)

networking

There are similar issues if it comes to distributed systems: there

is a demand to develop techniques allowing one to determine

the security level of distributed systems at runtime and to

make a distributed system’s components intrinsically secure. In

matters of Cloud Computing – one specific form of distributed

systems – techniques to separate sensitive from non-sensitive

data as well as solving legal and liability issues are required.

Furthermore, as distributed systems may network sub-systems

from different domains, an amalgamation of perspectives and

techniques from different domains is necessary. The aforemen-

tioned domains may include safety and security realms, which

is why ways to fuse safety and security mechanisms must be

explored. Especially the convergence of the world of informa-

tion and the physical world (embedded devices, cyberphysical

systems) renders it necessary to invest in R&D focusing on

security and safety at once.

6. legacy: The complexity of Evolved software

Ecosystems

Dealing with the legacy requires one to integrate security

into systems retroactively. This may be done pragmatically via

isolating untrusted building blocks; encapsulating untrusted

building blocks by building virtual software cages; or building

security into legacy systems ex-post. All these measures

presuppose the development of easy-to-manage techniques

and tools. Quite in general, there is a need for tools and

procedures to analyze security and safety in very large and

complex systems; for scalable techniques and tools that

allow complex systems to be broken down and analyzed in

aggregates; for risk assessment techniques that go from the

top all the way down; and for techniques to identify at-risk

components stochastically. To avoid legacy in the future, how-

ever, there is a need to build security into systems proactively.

Therefore, smart documentation techniques for expertise and

knowledge capture as well as for preserving assumptions and

design decisions are required, just as the development of novel

methodologies that account for SD’s »evolutionary«

7

character are necessary. While educational institutions are

called upon to prepare developers for being confronted with

loads of legacy, industry is well advised to harmonize in-house

code production to keep code comprehensible and establish

long-term perspectives on the systems they produce. This

may be achieved by optimizing software architecture and by

introducing product line engineering.

In turn, the SD trends lead to six challenges for IT security

pertaining to different aspects of SD:

 � Education: The flexibility of current SD calls for raising indi-

vidual developers’ expertise

 � processes: Ways must be found to render security pro-

cesses systematic and scalable also in large, distributed, and

unstable social networks

 � methodologies: The flexibility coming with the spread of

agile values must be reconciled with building continuity

into SD

 � Techniques: The increase in networking distributed com-

ponents brings up the need to encapsulate untrusted com-

ponents and develop intrinsically secure building blocks

 � metrics: There is a dire need to find better ways to mea-

sure the security of components, systems, and processes

 � Tools: To assist developers in integrating security in SD pro-

cesses, tools must be equipped with automated secure

engineering features

8

1. IntroductIon

In recent years, software development (SD) and IT security as well have undergone massive

transformations. As regards the former, the perceived need for more flexible approaches to

software development culminated in the 2001 »Agile Manifesto«1 indicating a turning away

from more linear, sequential methodologies as represented by the waterfall model. What is

more, working environments (outsourcing, freelancing etc.) were rendered flexible in general,

which certainly did affect the world of SD too. On the technical level, new sorts of products

and services appeared, such as apps and Software-as-a-Service. Further, developers began to

have more and more tools at their disposal when developing software, relying on Integrated

Development Environments (IDEs) and the like.

As far as IT security is concerned, there was a steady rise in news stories reporting on security

breaches. Especially in 2013, the public realization of US secret service National Security Agency

(NSA) activities enjoyed considerable press coverage. Events even drove the former German

Minister of the Interior Hans-Peter Friedrich to strive to enact an IT security law.2 From a more

general point of view, as the internet was somewhat expanded to a network, more and more

things started to rely increasingly on the internet, including systems of the physical world

(cyber-physical systems) that had previously run more or less isolated, as well as the workings

of everyday life. As a result, while critical infrastructures have become integrated into digital

networks, the latter have become critical infrastructures in their own right.

These rather general remarks may suffice to justify the intuition that (somewhat interrelated)

major transformations in the realm of software development and in that of IT security have

taken place in the last 10 to 15 years; moreover, there is no reason to believe that the dynamic

of change in both these areas is going to come to a halt in the near future. We take this

intuition as an opportunity to act empirically and pose the questions of what exactly the crucial

transformations were that happened in the last decade or so in SD; which ones are to be

expected in the near future; and how those transformations are likely to affect IT security.

Thus, the aim of this report is to indicate trends in software development that are currently emerg-

ing and their implications for IT security. Having said this, it is, of course, beyond all doubt that

nobody is able to look into the future. However, it is still possible to elaborate possible future devel-

opments, the chains of cause and effect associated with them, and the related options for action

(Steinmüller/Schulz-Montag 2004: 63). As regards the accurateness and exactness of trend analyses,

sociological technology studies distinguish between visions and scenarios: while the former »are

vague in their specifications of the technical features and the forms of use of the envisioned

technology« (Schulz-Schaeffer 2012: 2,3), scenarios work by indicating rather concrete chains of

cause and effect (Steinmüller/Schulz-Montag 2004: 63). In the study presented here, our aim is to

provide a catalogue of the developments from the recent past or currently underway, respectively.

Therefore, our approach comes closest to what is usually called an »explorative scenario« (ibid.).

1 www.agilemanifesto.org

2 www.handelsblatt.com/

politik/deutschland/koalitions-

verhandlungen-friedrich-will-

it-sicherheitsgesetz-durchset-

zen/9022878.html

9

We aim to achieve this by systematically absorbing the expertise of key figures in industry,

academia and regulating agencies so as to generate an empirically funded picture of the trends

underway (i.e. according to this expertise and at times to the additional material considered in

the analysis). To do so, we harnessed qualitative sociological research methods. Exploring trends

presupposes applying a method that exhibits a certain measure of openness. Furthermore,

in our study we are interested in several influential factors, such as the social organization of

SD, the technologies (e.g. tools) being used as well as the technology (i.e. the software) to

be developed and so on. In this sense, our study is located at the intersection of sociological

technology studies and organization studies. While it is quite usual in technology studies to

focus on experts, in organization studies the method of the qualitative interview occupies

a leading position (Kühl/Strodtholz/Taffertshoffer 2009: 19). For this reason we applied the

method of the qualitative expert interview when conducting our study. In this context, experts

are to be understood as decision-makers within some institutional setting; they are responsible

for designing, implementing, and controlling organization-related interventions and solutions,

and they have unrestricted access to sensitive information as regards organizational structures

and decisions (Liebold/Trinczek 2009: 34). In the context of SD/IT security, different types of

experts are to be considered:

 � Professionals responsible for industrial software development, such as developers, team

leaders, project managers, executives, consultants etc.

 � Professionals responsible for IT security in industrial software development, such as chief

security officers, chief information officers etc.

 � Researchers at universities and semi-public research institutes concerned with either software

engineering or IT security, or both (secure software engineering).

 � Experts located in the institutional infrastructure that provides the framework of academic

and industrial software development/IT security endeavors, such as delegates, regulators,

public authorities’ representatives, or auditors and evaluators operating product certification.

These experts are expected to pick up information regarding current and future developments

in the area of software development/IT security: due to their position they can be considered as

possessing an »empirical radar« that gathers information related to relevant trends in everyday

practice. Hence, in-depth expert interviews with influential actors, i.e. with experts from all

areas listed above formed the core of our analysis.

In the next section we will describe the research procedure before presenting the results in

section 3 and 4. Finally, in section 5, we will map research challenges resulting from the trends

identified.

10

2. research procedure

We did not limit ourselves to conducting expert interviews. Instead, we followed a threefold

research strategy:

 � First, we systematically collected internal expertise by conducting several brainstorming ses-

sions with scholars at EC SPRIDE and the Technical University Darmstadt.

 � Second, from the internal expertise collected, we developed a questionnaire designed to

guide »quick and dirty« interviews with developers conducted at the CeBit fair 2013. These

interviews served two purposes: a.) validating the assumptions put forward by our internal

experts; and b.) broadening the spectrum of issues raised by addressing not only academic

experts but also practitioners »in the wild.« This allowed for developing a very robust ques-

tionnaire, which we relied upon when taking the main step of our investigation:

 � Third, we conducted 21 in-depth expert interviews with 23 key figures (two »double inter-

views«) in industry, academia, and institutional settings.

Given the background assumptions we derived from the gathering of internal expertise, we

developed an interview guideline including 14 questions3. This guideline concerned the follow-

ing areas:

1. An entirely open question concerning the major transformations in software development in

the last 10 to 15 years and transformations to be expected in the near future

2. Questions concerning making employer-employee relationships flexible and the potential

implications for IT security

3. Questions concerning the geographical distribution of collaborating developers and firms

4. Questions concerning development methodologies (assessment, pros and cons, whys and

wherefores, future evolution etc.)

5. Questions concerning the relation between software type (application type, legacy etc.) and

development methodology

6. Questions concerning the relevance of and awareness for IT security

7. Questions concerning the role of tools and technologies in software development

8. An entirely open question asking the interviewee to identify relevant themes insofar as they

were not addressed in the interview

In posing questions concerning these areas, we did not mean to impose our worldview on inter-

viewees. In fact, one of the unique strengths of qualitative research is that it leaves plenty of room

for study participants to differentiate, challenge or refute the assumptions the interviewer may hold

and to feed information into the interview in a way that was not anticipated by the interviewer. We

argue that this is precisely what renders expert interviews an appropriate method for conducting

trend analyses; for as experts are expected to be the first to catch sight of indications for current and

future developments, it is not possible for the non-expert interviewer to anticipate their expertise.

3 This is the maximum

number of questions that

we posed; however, as not

all questions were applica-

ble to all interviewees‘ pro-

fessional areas, the number

varied between 13 and 14

questions. Moreover, as is

common in semi-structured

expert interviews, if in the

course of the conversation

further questions arose,

still more questions were

formulated ad hoc by the

interviewer.

11

So whom did we interview? The following gives an overview over our interviewees’ profes-

sional areas:

 � Software developers, team leaders, project managers: 5

Interviewees’ affiliation types: one global player in business software, one global player in

consumer and industrial electronics, one worldwide operating bank, one major insurance

company, one publicly-funded European high-tech institution.

 � Security products & consultancy: 4

Interviewees’ affiliation types: three middle-sized and one large security software and con-

sultancy firm.

 � IT security experts in industrial software development: 5

Interviewees’ affiliation types: three global players in business software, one global player in

consumer and industrial electronics, one global player in telecommunications.

 � Researchers at Universities and semi-public research institutes: 4

Two researchers located in Germany, one in the EU, one in the US.

 � Experts located in the institutional framework: 5

Interviewees’ affiliation types: two delegates, one auditor, one public authorities’ representa-

tive, one regulator.

Generally speaking, most of the respondents were based in Germany. Many of them have work

experience abroad (especially in the US), and two of the Germany-based interviewees have

a US and a UK background, respectively. Two further interviewees were US citizens living in

the US. After conducting the interviews, we went on to categorize the answers. While doing

so, we did not make use of a pre-defined category scheme. Instead, we developed categories

from the interviews themselves so as to really be able to systematically grasp and group the

interviewees’ themes.

In the remainder of the paper, we will present the major trends to be identified from our

interviewees’ statements.

12

3. results I.: the current software/
 It securIty world accordIng to
 experts

When analyz ing the interv iews, we ident if ied a range of major themes

addressed by our study part ic ipants. Having categor ized those themes, we

c lustered the statements into s ix major trends. These trends concern the socia l

and technical organizat ion and accompl ishment of software development as

wel l as the IT secur i ty impl icat ions this br ings about. Before providing an

analys is of the trends, we wi l l short ly summarize our experts ’ statements on

the general character of current and future software systems, and on the cur-

rent IT secur i ty s i tuat ion as wel l . By doing so, we intend to give the reader an

idea of the software/ IT secur i ty wor ld our interv iewees referred to.

3.1. software characteristics

The account we will provide in this section is largely the result of analyzing the answers to the

first, entirely open question we posed in the interview: »From your perspective, what are the

major transformations that have taken place in the realm of software development in the last

10 – 15 years?« This is, of course, a very broad question that may refer to both the process and

the product of software development. The purpose of posing it was to prompt interviewees to

indulge in brainstorming (concerning recent and future trends in software development) with-

out any specific prior priming (except for the general introductory briefing of study participants,

that is). At this point, we are only interested in those answers that refer to the character of

current and future software systems (i.e. software development’s products). We clustered these

answers into seven categories (in parentheses we indicate the number of participants who

mentioned the topic)4:

a) cloud computing & saas: Browser-supported access via midget Terminals (15)

By »Cloud Computing« experts [E1, E2, E4, E5, E7, E8, E9, E10, E12, E13, E14, E16, E19, E21,

E22, E23]5 referred to a range of things, such as companies outsourcing storage to external

services or individual end users making use of software that does not run on their device locally.

Accordingly, the common denominator of all those who, one way or another, addressed Cloud

Computing is the increase in using software systems that do not run on the user’s (be it a profes-

sional organization or an individual) own hardware (be it servers, desktop PCs or mobile devices)

but are external to the entity that is using its device. Experts highlighted that the role of hardware

will be ever more reduced to possibly small-sized terminals allowing access to external infrastruc-

tures featuring computing capacity and software via browser technology. Some interviewees

stressed that, in a sense, Cloud Computing marks the return to huge systems, such as those that

were ran in the pre-90ies on mainframes. The turning away from these systems that occurred by

introducing PCs in the 1990ies is somewhat reverted; the current return to huge systems features

a novelty insofar as Cloud Computing infrastructure nowadays comes in a networked fashion.

4 Please note that we

only include topics that

were mentioned by at least

three study participants.

Three actors, according

to sociological definition,

is the minimum number

of what can be called a

»group.« In this sense, we

only present topics here

that were identified by a

group of people.

5 When analyzing

the interviews, each of

the 23 experts received a

randomly assigned number

between 1 and 23. We will

thus indicate to whom a

particular consideration

refers by stating »E« for

»expert« and the respective

random number in squared

brackets.

13

b) Distributed Systems and Intensified Networking (11)

Another key theme experts [E1, E2, E4, E5, E6, E10, E12, E17, E19, E20, E21, E22] brought

up was the distribution and networking of systems. Furthermore, interviewees believed that

there would still be more cross-domain networking, for they assumed that in the future virtu-

ally everything will be equipped with sensor technology and embedded software, including

the ever more physical systems and critical infrastructures. Ubiquitous computing, ambient

intelligence, smart environments, and the Internet of Things can be considered catchwords

pointing to different aspects of intensified networking, and our respondents left no doubt that

this has wide-ranging implications for software systems hitherto deemed to run in isolation.

Finally, experts expected an increase in distributed systems, i.e. in distributed software as well

as distributed architectures, functionality and services, as exemplified by Service Oriented

Architectures (SOA).

c) legacy: The complexity of Evolved software Ecosystems (10)

The third theme to be accounted for is the historically evolved complexity of the software

ecosystem [E4, E6, E8, E11, E12, E13, E16, E19, E20, E23]. Some of the systems composing

the latter possess considerable histories with countless developers having contributed to their

actual form. While legacy problems coming with complexity and a rather long lifespan are

well-known, a nice way to express this was provided by one of our experts, who characterized

software systems as »emergent systems« in order to highlight their constant changeability.

In this respect, many respondents also identified an acceleration in the change and danger of

unmanageability.

d) mobility & apps (7)

According to our respondents [E1, E2, E4, E13, E15, E21, E22, E23], a trend that has already

been underway for a while, and, moreover, most probably is going to persist, is the further

intensification of mobility. Most of the experts agree that apps and rather small special purpose

software predominantly in use on smart phones and tablets will further propagate; so will the

use of mobile devices. In this respect, one of our interviewees identified a trend towards blur-

ring the boundary between the internal and external use of mobile devices: such devices will

increasingly be used in both ways. That is to say that devices will become mobile in general.

e) compositional software systems and modularization (6)

A feature gaining ever more foothold in the future according to our respondents [E3, E5, E7,

E9, E11, E18] is the one of compositionality. Increasingly, software will be made up of more

14

or less standardized modules or components that will be pieced together, thus building a

particular system for the purpose of a particular use case. Many respondents pointed to the

automotive industry as providing the blueprint for this kind of breaking up a product into

standardized components so as to knit standard elements together afterwards. Compositional

systems will be produced not only by software vendors, but software code is and will also be

distributed widely via the internet and be integrated into software products, thus being reused.

f) domain convergence (5)

An outcome that to a certain degree also, but not exclusively, follows from intensified network-

ing is domain convergence [E4, E6, E10, E17, E19]. For example, cars may be equipped with

Advanced Driver Assistance Systems (ADAS) one may connect with a smart phone in order to

make use of online maps. In such a case, web-based information processing and safety relevant

systems, such as the car’s sensor based embedded systems, affect each other. Moreover, the

car may be connected to some backbone business IT that sends information used to improve

the car’s performance. Whereas there are profound implications for security/safety, domain

convergence will also go along with hardware convergence, as it is ever more difficult to

distinguish hardware devices: laptops, phones and tablets will hardly be specifiable, and hybrid

technologies, such as »phablets« (a combination of smart phone and tablet), will emerge.6

g) high availability (4)

The last characteristic we will account for here is the high availability of software systems. This

characteristic is, of course, predominantly relevant as it regards systems that are accessed via

the internet or otherwise and provide a specific service to the user. A case in point exemplifying

the relevance of high availability may be search engines: using search engines as a service is

something that is taken for granted in everyday life. The systems are more or less accessible any

time, and they have to be in order to be perceived as obvious, everyday life infrastructure. This

is, of course, crucial. The more they are perceived in this way, the more users these respective

services attract – which is in turn highly relevant, as the companies providing search engines

usually rely heavily on targeted ads.

Thus, according to our experts, these are the seven main characteristics of current and future

software systems. We will take up some of these characteristics explicitly again when dealing

with our major trends in software development below; others will be treated implicitly in the

analysis. Before indulging in the latter task, however, we will first provide a scenario of the

general current IT security situation as portrayed by our study participants.

3.2. general iT security situation6 See Newman (2013).

15

As regards the general IT security situation, we mainly summarize the experts’ statements that

referred either to the current situation (e.g. attack scenarios) or to the relevance of and aware-

ness for IT security in the past, present and near future. Whereas we did include one explicit

question concerning the relevance of security for different stakeholders in the SD process7,

relevance and awareness were also addressed repeatedly in the interviews by the experts them-

selves. As our coding and category scheme was developed from the empirical material itself, we

clustered such statements into two categories, the content of which we will present here.

3.2.1. IT Security So Far: A 2nd Order Problem

According to our experts, security is by and large still treated as a 2nd order problem [E3, E7,

E10, E11, E12, E15, E17, E18, E20, E22, E23]:

 � customers: According to our interviewees’ experience, customers do not care too much

about security [E1, E2, E3, E7, E10, E11, E15, E18, E23]. There are several reasons for this:

first, customers and consumers oftentimes lack a proper understanding of security issues:

they tend to simply take security for granted when purchasing software products or services

without being able to specify their security requirements and without being willing to pay a

premium [E10, E15]. While security awareness among customers is apparently highly domain

specific [E16, E21], generally speaking, there is not (yet) sufficient demand in order to make

security a competitive advantage [E21], for many customers still focus rather on functionality

and positive use value of a given software, instead of risk [E1, E2, E10, E16].

 � firms: Hence, as taking care of security is expensive without visibly or directly paying off,

many firms treat the matter likewise as a 2nd order problem: the functionality-security trade-

off more often than not is lost by security [E1, E2, E6, E12] unless security breaches are

made public [E12, E20]. At this point, it becomes obvious that the industry necessarily has

an interest in increasing awareness, for if customers are not aware, they are only little willing

to pay for security. However, if breaches occur, producers (not customers) will be held

responsible (not necessarily in legal, but surely in public attention terms). In this sense, it is

the producers who carry the risk of suffering from reputational damage. In contrast, if cus-

tomers are security aware and willing to pay, producers acquire the resources to integrate

security in an economically reasonable way, thus decreasing the risk regarding reputation.

 � developers: While firms necessarily have a »natural« interest in producing secure products,

developers themselves, according to our experts, tend to ignore security if they are not made

aware by management [E3, E11, E22]. Some respondents saw one of the reasons for the

alleged lack of developers’ awareness in a psychological problem: taking care of security in

7 »I would like to ask

specifically for the role IT

security plays in the deve-

lopment process. What do

you think is the role of IT

security for clients of soft-

ware developers and for

software developers them-

selves?«

16

SD for developers amounts to taking a destructive stance when actually being in a produc-

tive mood – it requires one to think about the system’s deconstruction (or destruction) while

still constructing it [E6, E10].

 � The security-innovation-dilemma: The problem here is that innovations in software

oftentimes are produced without the developers having a precise usage context in mind.

Systems are created and usage context is only established »in the wild« once the system is

running (e.g. Facebook was introduced as a college networking platform before gradually

evolving into the most successful online social network worldwide). Therefore, it is still

harder to anticipate threat models and attack scenarios correctly. If firms do have a strong

focus on security at the outset, they may develop secure applications – however, at the cost

of quickly rolling out innovations [E12]. Thus, while awareness for security is a pre-condition

for developing secure software [E1, E2, E6, E10, E15, E19], stakeholders’ attitudes, neverthe-

less, tend to be characterized by a »security paradox«8: customers, producers and the gen-

eral public may give security rhetorically greater relevance than when compared to their

actual practices [E23].

3.2.2. IT Security From Now On: Increased Relevance and Awareness

However, according to our experts, as there are novel types of technologies as well as novel

types of actors and adversaries involved, the IT security situation has been profoundly trans-

formed in the last 10 to 15 years; also, there are increasing stakes. Consequently, more than

half of the experts interviewed (12) agree that the relevance of and awareness for IT security

has been heightened (albeit emanating from a rather low general awareness level, see above);

and they expect security to continue to gain relevance in the future. As reasons for the increase

in relevance in the future they indicate a range of things:

 � Embedding software into all Kinds of Things: The first reason is to be found in the net-

working of everything, including critical infrastructures and the physical world, with security

and safety issues possibly converging [E1, E2, E4, E6, E12, E14, E15, E18, E19, E22]. With

awareness in critical (say, financial or safety-related) areas traditionally being high [E7, E13,

E19, E20], we may infer that as the whole world moves on into the digital realm, awareness

increases in general. Participants expressed their belief that this might be considered as some

kind of »natural« process towards more security/safety (similar to introducing seatbelts in car

manufacture [E14]).

 � new Types of actors/adversaries: There are new types of actors involved, such as large

scale organizations that dispose of massive resources (organized crime; states involved in

industrial espionage, cyberwar, terrorism or counter-terrorism) [E9, E14, E21, E22]. As

8 The term »security

paradox« is borrowed from

S.B. Barnes (2006) who

coined the term »privacy

paradox« when doing IT-

related privacy research.

»Privacy paradox« describes

the discrepancy between

the relevance users ascribe

to privacy when being

asked about it and their

actual privacy practices.

17

observable in 2013, when US secret service NSA’s far-reaching activities became public, these

novel types of actors are able to pose Advanced Persistent Threats (APIs), i.e. to orchestrate

long-lasting attacks that are meticulously planned and hardly detectable by the target with

virtuosity. While our study was carried out before the NSA scandal was covered by the mass

media, some participants indicated that awareness had already at that time, i.e. »pre-NSA«,

reached the executive management level [E3, E16, E22].

 � The increasing complexity of software: The more complex the systems, the more diffi-

cult (or even impossible) it is to integrate security retroactively; in this sense, the increasing

complexity of software systems heightens the relevance of engineering security into the sys-

tems right from the beginning [E4].

 � The increase in integrating Externally produced software components: As supply

chains in software development become more complex, there are more and more open

source or outsourced components that software producers integrate. This makes security

more relevant [E18].

As security gains relevance, awareness also increases. Study participants mentioned two further

reasons for such an increase:

 � more attacks and security Breaches That gain the attention of the mass media [E1,

E2, E3, E6, E14, E18, E22]: From the explanations above, it follows that such breaches con-

cern state-run as well as criminal activities.

 � nowadays literally Everybody faces security issues in his or her Everyday private

life [E19]: For example, when browsing the web, people are made aware of the need to

install firewalls, be careful with data in online social networks, take data protection mea-

sures, etc.

The bottom line of the experts’ statements regarding the general IT security situation is that

relevance and awareness have increased in the last 10 to 15 years, albeit emanating from a

rather low level. While experts expect IT security to be of continuing or even increasing rele-

vance in the future, whether awareness is going to keep pace, not only informing practitioners’

(customers, firms, developers) ideas but also their practices remains an open question. This is

the background situation against which we will next present trends in software development

and their implications for IT security.

18

As we stated above, the experts participating in our study raised a manifold of issues. We

coded the statements and sorted them by building 14 categories, with one category being

sub-divided into two sub-categories. From the categories we further condensed the material

by building six clusters identified as the main trends in software development. These trends

concern the following phenomena:

1. SD’s Working Environment: Dynamic, Flexible, Distributed

2. Agile Software Development

3. Code Generation and Assembly of (Prefabricated) Code

4. Compositional Systems and Modularization

5. Distributed Systems and Intensified (Cross Domain) Networking

6. Legacy: The Complexity of Evolved Software Ecosystems

In what follows, we will treat these trends successively. For each trend, we will first flesh out

the aspects our experts accounted for as well as the implications these trends may have for IT

security. We will conclude each section by providing a lessons-to-be-learned sub-chapter sum-

marizing what follows from the insights in terms of IT security.

4.1. sd’s working Environment: dynamic, flexible, distributed

As regards the SD working environment, experts pointed out three general

t rends: accelerat ion; render ing organizat ional structures f lex ib le; and distr ibu-

t ion of product ion s i tes.

4.1.1. Acceleration of SD Processes

One section of the interviews directed the interviewees’ attention to the general SD working

environment. In this respect, 11 out of 23 respondents identified an extreme acceleration of

SD processes as having begun to characterize SD in the last 10 to 15 years. Business pressure

is significant [E5, E11, E20, E22], customers expect to be integrated into the development

process and new features to be rolled out quickly [E8, E13]. Furthermore, with Cloud

Computing, players without massive computing capacity may become competitors [E3, E13,

E23]. As a result, there could be less time to focus on requirements gathering and design;

developers begin to code early on in the development process [E5, E13], and development

cycles get extremely short [E6, E15, E20, E21, E23]. To illustrate this point, we may refer to

one of our expert’s statement holding that in an app environment, idea to market phases may

last one week or less [E23]. Also, enterprises must realize their ideas very quickly: as today the

flow of information in general is hardly controllable anymore (due to online social networks

etc.), business secrets are not able to be kept for a long time. Thus, companies have to deliver

4. results II.: trends In software
 development & It securIty ImplIca-
 tIons

19

fast if they want to beat their competitors, for the latter will duplicate product features

quickly [E23].

4.1.2. Rendering Organizational Structures Flexible &
 Fluctuation of Staff

In the interviews we asked participants for an alleged increase in limited working contracts, i.e.

whether there is more freelancing, more fluctuation of (and therefore less permanent) staff.

The picture that emerged from analyzing the statements is somewhat ambiguous:

 � There were eight respondents confirming the trend towards more fluctuation of staff, point-

ing to phenomena such as more freelancing, contract workers [E9, E11, E12] and intensified

division of labor [E17]. However, some respondents were convinced that the trend pertains

to large-scale projects in the first place [E15] and is restricted to specific domains, such as SD

for the web [E16]. One interviewee saw freelancing as an empowerment of highly-skilled

experts who may choose what enterprise to work for and for how long [E12]. Another

stated his conviction that the trend is going to persist, at least in Germany; for due to demo-

graphic change and insufficient immigration, there will be a shortage of experts in certain

areas [E17]. It is noteworthy, though, that of the eight respondents confirming the trend,

only one worked in industry.

 � In contrast, another eight respondents, seven of whom are working for global players in

their respective SD sectors, reported that working conditions in their (Germany based) enter-

prise are rather stable due to demand for skilled software developers being extraordinarily

strong. They held that fluctuation is highly dependent on the region and sector focused

upon. For example, there is a much stronger »culture of rotation« in the US (Silicon Valley)

and India [E1, E2, E6, E19], in start-up firms or stock corporations [E19], and in global out-

sourcing centers [E8].

To explain the differing views on personnel fluctuation, we refer to the distinction of »fluid

organizations« and »caring companies« (Spath 2012): while the former tend to recruit so-called

»cloud workers« on a short-term contractual basis, the latter strongly bind employees to them

to »smooth cyclical developments by long-term ‘internal’ measures of flexibility« (ibid.: 18).

From this assessment we derive that in »fluid organizations« there will be a lot of fluctuation in

the sense that the staff base will be unstable; hence, »outsiders« will frequently join and leave

such companies. We will call this external fluctuation. As regards »caring companies«, they are

more strongly characterized by what we will call internal fluctuation. This latter form of flex-

ibility is indeed what most of our interviewees addressed in the first place. According to them,

what we will increasingly face is internal structures being made flexible, i.e. a transition towards

20

flat hierarchies, internal fluctuation of staff and non-long duration or »fluidity« of internal

organizational structures [E13, E23]. Moreover, employees do or will expect not to be bound to

a particular place and time when fulfilling their tasks [E3, E6, E19, E23].

While a certain degree of external fluctuation was deemed positive (breathing some fresh air

into a company’s SD processes [E9, E15, E18, E21, E23]), experts nevertheless agreed that there

would be problems if external fluctuation passes a certain threshold, such as isolated freelanc-

ing narrowing the developers’ perspective, thus keeping her/him from finding lean and possibly

simple solutions that do not offer more attack surface than necessary [E16]. Likewise, respon-

dents considered internal fluctuation beneficial for employees’ creativity and innovativeness [E3,

E6, E8, E10, E12, E18]. Further, they identified IT security problems this may bring about. There

are two major problems associated with internal and external fluctuation:

 � problems with External fluctuation: possible leakage of internal Expertise

As regards the leakage problem, several respondents [E6, E9, E10, E15, E18,] mentioned

two issues: first, the possibility of hired short-term freelancers to build back-doors into soft-

ware products or harness their detailed knowledge of the code by attacking the vulnerable

parts of the software systems once they do not work for the company any longer. Second,

developers hired may feed expertise they have acquired in one company into a competitor’s

business. While this may come across as malicious intent, interviewees held that it may also

happen unintentionally. External fluctuation may raise loyalty problems that can occur as a

result of developers applying knowledge they have acquired in the course of the different proj-

ects without being necessarily able to tell what knowledge was developed in which project.

 � problems with internal fluctuation: loss of Expertise & weakening of Know-how

Transfer

The main issue in this regard is to build continuity into SD processes: seven participants men-

tioned the danger of losing expertise by developers moving on to a new position within the

company or to a competitor [E3, E4, E12, E15, E16, E18, E20]. Yet even if developers stay

within the same firm, internal fluctuation threatens to take away expertise from the sector

where it was built. Similarly, an effort is to be made to make sure that the expertise

established is transferred to »newcomers« so as to provide continuity to the SD process.

While instructing new team members always involves frictional loss [E20], without taking

measures that make continuity and know-how transfer possible, firms will be dependent on

a small number of key developers and unable to cope with the complexity of security issues

[E20]. Thus, code quality may suffer [E3].

21

4.1.3. Distribution of Production Sites

As regards the distribution of SD, 22 out of 23 interview partners confirmed the trend, with

one implicitly (unintentionally) skipping the question. Distribution may take two distinguishable

forms, with different problems associated with them: the distribution of production sites,

and outsourcing the production & integrating 3rd party components. Before listing security

issues associated with these two forms, we would like to clarify that many of our interviewees

deemed distribution generally indispensable. They highlighted that for large companies it is

mandatory to dispose of production sites at localities where specific types of expertise are

available [E1, E2, E12]. In respect to outsourcing and integrating 3rd party components, respon-

dents held that no business is able to produce every software component from scratch [E1, E2];

as software systems are getting ever more large and complex, it would be too costly to produce

everything in-house [E20]. Therefore, enterprises reduce costs [E7], and increase efficiency and

speed by distributing the SD process [E9, E16]. In what follows, we will indicate the security

issues possibly arising from the different forms of distribution.

 � distributed production sites of one and the same company:

As far as large-scale enterprises are concerned, they tend to maintain different production

sites (or expand via Mergers & Acquisitions) to harness geographically bound expertise and

the innovative capacities dispersed throughout the world [E1, E2, E3, E21, E23]. Such distri-

bution threatens to bring about a range of well-known coordination problems, e.g. lack of

control, frictional loss, misunderstandings, coordination problems resulting in redundancy or

architectural issues. Those problems are due to increased difficulty in effectively organizing

communication in geographically distributed settings [E1, E12, E14, E17, E19, E20]. If the

scale of distribution is transnational or even global, cultural differences concerning hierar-

chies, norms or legal frameworks – while potentially inducing diversity and creativity and

extending a company’s knowledge base [E1, E19] – may also further aggravate the commu-

nication/coordination problem [E10, E19], thus threatening to generate security issues [E23].

Geographical distribution of cooperating production sites makes it harder to build teams and

develop a shared vision of the product to be produced, i.e. to develop and share a common

goal, which according to experts is one of the greatest sources of IT insecurity [E1, E2].

Accordingly, one expert stated categorically that the greater the number of developers

involved and the more distributed and decentralized the SD process, the worse the quality of

the resulting code [E14].

 � outsourcing & integration of 3rd party code (including os):

There is a global division of labor and a »modularization« of production via partnering, out-

sourcing, offshoring, subcontracted supply, etc. Whereas almost all respondents (22) agreed

on this, there are also several problems. The first one concerns trustability in terms of supply

22

chain security [E21]: there is always a risk associated with collaboration if outsourcing partners

are only trustable to a limited degree [E9]. Outsourcing may result in industrial espionage, IP

leakage, draining of know-how, but also in the withering of one’s own competencies [E4, E6,

E7, E9, E16, E19]. Consequently, many experts argue that critical components (authentication,

cryptography) should be produced in-house, if possible [E8, E14, E15]. Still, as regards the prob-

lem of loss of know-how, experts identified a risk of becoming dependent on external out-

sourcing partners [E1, E2, E7, E12], particularly if an ongoing modification of the product is nec-

essary [E10]. Second, outsourcing complicates the precise specification of requirements [E4]. As

requirements are, according to experts, impossibly specifiable unambiguously, outsourcing may

lead to increased costs and coordination overhead, thus requiring more formalization, testing,

QA and validation [E16, E22]. Requirements specification has become more difficult because of

market dynamics and fast requirement changes [E20], so it is even more important to explicitly

agree on the features of outsourced components, including security and architectural stan-

dards; and to attach importance to precisely laying these down in contracts [E13]. Third, there

can be »compatibility problems«: if the code base of one’s own and the integrated component

are not known in detail, unutilized features may increase the attack surface [E6]. Also, using dif-

ferent types of Integrated Development Environments (IDEs) or tools may cause security issues

[E22] (which is why some of the experts we interviewed provide outsourcing partners with

complete IDEs [E13]). As a result, outsourced services threaten to deliver poor quality [E4, E22]

and thus poor security. Fourth, and mainly related to integrating 3rd party components, the

problem remains that the quality of, and the meeting of security standards by, externally pro-

duced (proprietary or OS) components must be properly reviewed [E6, E7, E8, E16] although so

far there is no proper metric to measure security [E1, E2, E10, E15, E17, E18, E21], especially if

it comes to OS components [E18]. Consequently, experts suggested that 3rd party components

should never be integrated as black boxes [E16], especially in safety areas [E6].

4.1.4. Lessons to Be Learned

Highly dynamic, flexible and distributed working environments are characterized by rapid

change in terms of the social networks of collaborating actors; this poses problems insofar

as rapid change does not allow for the establishment of strong social ties. At the same time,

however, what implicitly follows from our experts’ statements is that the weaker the social

relationships between collaborating actors, the greater the probability of security issues to

emerge. This makes for the following lessons to be learned:

 � acceleration & External/internal fluctuation of staff:

In respect to acceleration and external/internal fluctuation of staff, the challenge is to build

continuity into ever changing networks of cooperating partners. Companies are well advised

to find ways to protect as well as capture their knowledge and expertise.

23

 � distribution of production sites:

Mitigating communication and coordination problems requires companies to invest signifi-

cantly in proper communication (e.g. making face-to-face meetings possible, making use of

up-to-date communication media etc.) [E1, E2, E16, E19, E20] and to enable team members

to build strong team relationships. At best, improved communication is accompanied by

defining requirements as accurately as possible upfront [E3, E13] so as to make sure that

security standards are indeed met.

 � outsourcing & integrating 3rd party components:

This is most probably the area that poses the greatest challenges, because social relation-

ships tend to be the least stable ones. Weak binding of developers, for example, potentially

raises loyalty problems, heightening the risk of IP leakage, etc. Our listing thus comprises a

number of issues:

 � Smart outsourcing: outsourcing critical components of the overall system is problematic.

 � Specification: specifying requirements as precisely as possible upfront, including security

standards, is required to mitigate security issues.

 � Establishing long-time and trustable relationships: over time, relationships to partners will

strengthen, thus involving mutual control, dedication, and loyalty.

 � Housing partners: housing outsourcing partners within one’s facilities may be considered.

If doing so does not evoke the danger of IP leakage, working in spatial proximity will

strengthen mutual dedication and facilitate communication. Outsourcing entails a certain

loss of control – spatial proximity may recapture control to a certain extent.

 � Harmonization: any attempt to harmonize the tools, frameworks and IDEs used by the

outsourcing partner with one’s own tools will potentially decrease the number of vulnera-

bilities.

 � Measuring security: not only when discussing distributed production interviewees

lamented the lack of metrics and tools to measure software components’ security level.

 � Certifying security: if there were proper metrics, it would be easier to certify products.

Until then, it is advisable to work with partners whose processes have been certified (ISO-

certified, common criteria etc.).

4.2. agile software development

According to our experts, whereas a certain professionalization has already taken place in SD

[E5, E8, E9, E10], further process systematization is still required [E3, E8, E19].9 When it comes

to methodologies, our respondents identified the widespread adoption of agile (and lean)

methods or values as a major trend in SD10 [E1, E2, E3, E12, E14, E15, E17, E18, E20, E21,

E22] – especially of Scrum and Continuous Integration [E1, E2, E14, E18]. Study participants

explained that there are several factors that determine the appropriateness of a particular

9 While there are

various methodologies

on offer, recent research

indicated that only 43 per-

cent of software develop-

ment organizations have

a defined development

process in place, with only

30 percent in fact adhering

to it (Ponemon 2013: 5).

10 Research revealed

that of those companies

that follow a defined pro-

cess the bulk sticks to agile

methodologies, followed

by waterfall approaches

(Errata 2010). In January

2010, an analysis of For-

rester Research on the

adoption of agile methods

in the industry indicated

that about one third of

software developers rely on

some agile approach; the

rather traditional waterfall

model, in contrast, is only

used by thirteen percent.

See the article »Evolving

Agile« in: Information Age.

Insight and Analysis for IT

Leaders, URL:

www.information-age.com/

technology/applications-

and-development/1596528/

evolving-agile (19.2.13).

24

methodology, such as project scale and number of stakeholders involved [E6, E8, E15, E16,

E17, E19]; the stability of requirements defined upfront [E1, E2, E4, E17, E19, E20, E22], and

business [E3] and safety criticality [E4, E6] of a given software. There is a certain tendency in

our interviewees’ statements: the bigger the project, the more stable the requirements, and the

more critical a piece of software, the more likely the SD process is to be plan-based, sequential,

extensively documented and so on – in other words, the more it tends to resemble the waterfall

model [E4, E6, E19]. However, at the same time many of the interviewees harbor doubt regard-

ing the appropriateness of waterfall-like approaches – either in general or in environments

characterized by massive business pressure and acceleration [E1, E2, E11, E17, E20, E22]. There

are two things following from these considerations: first, given that the SD business in general

is characterized by pressure and acceleration (see above), it is most likely that the trend towards

agility is going to persist; second, as security is gaining relevance, the question is how to

integrate security into agile approaches. Clearly, about one third of our interviewees explicitly

stated that agility, in general, is not at all an obstacle to integrating security into SD processes

[E8, E13, E15, E18, E19, E21, E22]. The question remains, though, whether the widespread

adoption of agility has implications for IT security. In this section, we will present an analysis

of our experts’ account of agility11: we will first briefly summarize some benefits of agility12

and then discuss possible drawbacks and implications agility may have for IT security; next we

will summarize the lessons to be learned before sandwiching a short interlude that discusses

whether there is a novel approach on the horizon.

4.2.1. The Benefits of Agile Software Development

Agile software development is considered quite appropriate in highly dynamic market environ-

ments [E17, E20, E23] where a strong focus on end user requirements is mandatory [E4, E5,

E15, E20], and there is no reason to expect that market dynamics are going to cease in the

future [E17]. Also, agile was deemed by most interviewees to be the weapon of choice when

projects are explorative, are about innovative development, offer leeway for developers and

do not involve too complex software architecture [E4, E6, E16, E20], although there were

also experts deeming agile SD appropriate for any type of project [E1, E2]. Regardless of the

context in which agile SD is implemented, respondents clarified that agile SD must not serve

as an empty label behind which developers hide chaotic SD practices [E20]; moreover, agile SD

neither frees developers from a priori specification of the system to be developed nor renders

systematic planning and procedures obsolete [E20]: However, it still presupposes developers

keep track of the global system to be developed [E10] and is not tantamount to setting aside

proper documentation [E1, E2, E4, E10, E12, E16, E18, E15]. Having said this, according to our

experts, there is a range of benefits coming with proper agile implementation:

11 Without defining

»agile« explicitly, we stayed

with the characteristics

formulated in the »Agile

Manifesto« (www.agile-

manifesto.org/)). More

generally, we used the

term as an umbrella for

non-sequential, non-linear

approaches, with short

development and strong

feedback cycles (customer

involvement), and fast out-

put of features. Teams are

flexible and roles are not

rigidly fixed. Our interview-

ees tended to take up one

or several or all of these

features when discussing

agile development.

12 Please note that our

account here is in no way

exhaustive. There may be

a manifold of benefits that

we do not put on record:

as we are mainly interested

in this report in IT security

implications of the trends

identified, our discussion

of possible drawbacks and

security implications will be

much more detailed than

our appraisal of agile SD‘s

benefits (in addition, we

take it that agile values are

becoming widely accepted

anyway).

25

 � speeding up sd in unstable Environments:

Generally, agile SD allows SD processes to speed up, account for the dynamics of emerging

requirements, and integrate customers/users into the SD process [E8, E4, E6, E12, E14, E22].

 � Empowering developers and Teams:

From the developers’ point of view, agile SD strengthens entrepreneurial mentalities as well

as heightens individual freedom and responsibility by equalizing and empowering team

members [E1, E2, E8, E12, E13, E22].

 � improving coordination:

Agile SD decreases loss of time spent for meetings and coordination; it fosters transparency

and collective learning, and improves predictability and productivity [E1, E2, E8, E13, E12,

E22].

What we can further conclude from the statements is that the effectiveness of agile method-

ologies depends on the way they are implemented by a given company; in this sense, experts

stressed that introducing agility does entail a change in business culture and organizational

structures of the wider organization indeed [E8, E18].

4.2.2. IT Security Implications of Agile Software Development

Many respondents mentioned that agile values affect SD processes in certain ways. In the fol-

lowing sections we will discuss the implications this may have for IT security. From our analysis

of experts’ statements, it follows that these implications eventually revolve around the notion of

expertise. In the next part, we will map out four areas where agile SD affects security: individual

expertise; scalability of expertise; preservation of expertise; and the involvement of laymen

expertise.

4.2.3. Changing Requirements and Developers’ Expertise

One of the fundamental agile values is »welcome changing requirements, even late in develop-

ment.«13 However, altering or introducing new requirements may have security implications

[E14]. Also, change in requirements, design and features threatens to bring about problems for

organizations insofar as any change on the SD level may have repercussions for the manage-

ment, QA, documentation and support level [E16]. Moreover, when outsourcing components,

it may prove problematic to change requirements late in the process; hence, how well agile

SD works with outsourcing strategies [E13, E8] is questionable. For these reasons, some of

the experts generally advised against following agile approaches when dealing with security

relevant system components [E6, E16]. In general, however, experts agreed that there still is the

necessity to specify security requirements of the overall system upfront [E4, E8, E18, E20, E21,

E22, E23]. If these requirements are treated as user stories, then in analogy to functional fea-

13 www.agilemanifesto.org/

principles.html (10.10.13)

26

tures [E14, E22], it has to be considered that they are very special kinds of features: they can’t

be modularized nor integrated in the final stages or a posteriori; and they have to be regarded

from the overall system’s view [E4, E11, E14]. What follows from these considerations is that

agile SD demands a great deal of individual developers in terms of security expertise. In fact, as

roles of and within SD teams tend to be more fluid, every team member needs to have security

awareness and expertise. This is because every team member must be able to specify security

relevant requirements as well as judge whether and how some change in requirements affects

security. In this sense, agile SD increases the security expertise that any individual developer

is required to have. Whereas not every developer has to be an IT security expert [E15, E18],

our interviewees were quite clear about their opinion that individual expertise is even more

important than having institutionalized, formal security processes in place [E1, E2, E14, E15,

E18, E19, E20, E21]: agile SD’s emphasis on the individual in turn requires the individualization

of security expertise (to a certain degree, that is). However, by and large developers still lack

adequate security expertise due to insufficiencies in education [E1, E2, E6, E9, E10, E14, E15,

E16, E19, E23].

4.2.4. Systematic Processes and Scalability of Expertise

Insofar as agile SD emphasizes the individual and downplays processes, it may evoke a

weakening of the overall system’s perspective [E1, E2]. This may prove problematic, since an

overall system’s view is necessary to take care of security14 [E4, E10, E17]. Furthermore, while

the formalization of processes may help to take up an overall system’s position, a defining

characteristic of agile SD is in fact the rejection of over-formalization.15 Experts agreed that

while formalization is necessary [E3], too much actually threatens to stifle the SD process – as

does too much taking care of security [E12, E16, E22]. In this sense, agile SD challenges com-

panies to implement systematic security processes [E14, E18], which allow security expertise to

be distributed as widely as possible without overburdening individuals with security concerns

[E21]. Any secure software development life cycle (SDLC) must be clearly defined and tailored

specifically to the company adopting it [E3, E15, E18, E20, E21], so testing and planning in

companies that have an agile SD process in place must be adapted likewise. In spite of the

specifics of implementing an SDLC in relation to a company’s organizational culture, experts

mentioned three measures that will be considered:

 � security Early on:

In agile SD it is even more crucial to integrate security into the SD process early on

[E18]: threat models and solutions are to be specified early on and followed up over the

whole SDLC; there must be early quality assurance, early (immediate) and systematic

testing [E12] instructed by experts [E14, E21]; immediate feedback and fixing is neces-

sary in the case of vulnerability occurences [E1, E2, E5, E18, E21]. This is even more

14 For example, accord-

ing to one expert, when

agile SD is realized as test-

driven development, it is not

possible to provide universal

system‘s specification, as

tests only refer to particular

courses of events; while

universal specification is, of

course, extraordinarily diffi-

cult to achieve the problem

with test-driven develop-

ment is that it suggests com-

pleteness with being able to

provide for it [E17].

15 The manifesto reads:

»Individuals and interactions

over processes and tools

(…) Responding to Change

over following a plan.«

www.agilemanifesto.org/

(4.10.13).

27

important considering there is a clear trend towards continuous integration [E1, E2,

E14, E18].

 � scalability of security Expertise:

Following an agile approach, companies may decide to introduce sprints that are dedicated

to security relevant user stories. This is only feasible if there’s sufficient time granted to those

security sprints [E8] and if there are security experts keeping track of the overall system

despite breaking SD down into sprints and feeding vulnerability detection back into the

development process for fixing [E14, E21]. As it is not very easy to implement feedback

mechanisms for immediate bug fixing in large-scale organizations [E14, E18], and as individ-

ual developers cannot be expected to have detailed knowledge of any testing tool (though

such knowledge is required so as to not have too many false positives etc.), security specia-

lists are supposed to manage testing tools centrally, with the developers able to choose cor-

rectly and use them if required [E10, E14, E21] so as to make security expertise scalable. One

problem here is that while security awareness in companies has improved in recent years,

the number of security experts advising development teams in industry still tends to be

rather low [E14].

 � strengthening Exchange:

Given that functional features and security issues tend to be treated by different people

[E23], increased exchange between developers and security is desirable [E10]. Importantly,

though, this not only requires individual developers to be equipped with the skills and tools

to realize and fix security issues [E18], but also security experts to acquire in turn agile SD

expertise so as to know how to integrate security into such processes [E23]. In this sense,

there is not only a need to provide developers with security expertise, but also to provide

security experts with agility expertise.

4.2.5. Preservation of Knowledge and Expertise

The biggest problem with agile SD, according to experts, is to develop a long-term perspective

[E1, E2, E10] and to preserve expertise in spite of the dynamics of agile projects. Agile SD does

not focus on lengthy conception, which may be unproblematic for developing many types of

software [E5]; however, if it comes to complex long-living software systems that run for years

or even decades, with staff varying repeatedly and considerable legacy involved [E10, E16] the

need arises to capture the assumptions and knowledge that went into the coding – which is

not what agile SD particularly supports in the first place [E1, E2, E3, E4, E22]. Having said this,

the analysis of the interview material allows to identify two strategies to preserve knowledge

and expertise:

28

 � documentation:

Documentation has always been an issue regardless of the methodology [E15, E23]. Still, it is

traditionally held to cater to a long-term perspective including security [E14, E16, E17, E21].

The agile manifesto cherishes »working software over comprehensive documentation«16,

which is why some of our interviewees at least implicitly held that agile SD may not be well

suited to preserve knowledge via documentation [E4, E16, E17, E19]. While some of our

respondents expressed their belief that quality of documentation is not at all affected by the

particular approach to be followed [E12, E15, E18, E23], others were rather confident that

agile SD does not neglect [E10, E21] – but quite on the contrary may improve – documenta-

tion [E6]: in Scrum, for instance, if backlogs are being cared for properly, the resulting

archive would amount to much more fruitful system documentation compared to the volu-

minous project documentation in waterfall-like approaches [E1, E2, E8]. Whatever one’s take

on this matter, what we may learn from expert statements is that traceability of design and

coding decisions will become even more important in the face of complexity, legacy [E10]

and the permanent, rapid change that nowadays characterizes the SD business. Especially if

agile SD is also meant to be adopted in safety or those areas where certification plays a role,

in-depth knowledge of the system, transparency and traceability of the code base are indis-

pensable [E5, E19, E22]. For this reason, it is currently quite difficult to adopt agile SD in

safety areas [E5, E6, E16], or may have to be adapted to those areas [E19]. Hence, following

our experts, we would like to plead for the improvement of explicit rules and techniques

allowing for such traceability [E18]; examples mentioned by study participants include com-

panies generating data bases capturing knowledge or experience in reaction to increased

turnover of employees [E4] and backlogs [E1, E2]. Nevertheless, to date there is a lack of

such techniques, no matter what SD methodology is in place [E5].

 � organizational learning:

Inventing or harnessing instruments that safeguard traceability will foster companies’ organi-

zational learning, an aspect that is in fact propagated by agile SD.17 Accordingly, experts

explained that »security« is at best to be considered a maturing process, aiming to improve

processes and products. Further, companies can be considered as social systems that need to

take measures (e.g. in terms of awareness, education, policies, communication, design etc.

[E14]) to learn from past experiences, thus improving their security performance. One of the

measures taken is to define explicit goals and to attempt systematically to reach them [E1,

E2, E12, E14, E22] (what is still lacking, though, is metrics to measure progress consistently

[E1, E2]). Yet, what has to be kept in mind is that due to fluctuation of staff, distributedness

of SD, and extensiveness of SD collaborative networks learning processes have to stretch

beyond small teams where members work in spatial proximity to each other.

16 www.agilemanifesto.org/

10.10.13

17 »At regular intervals, the

team reflects on how to become

more effective, then tunes and

adjusts its behavior accord-

ingly.« www.agilemanifesto.org/

principles.html

29

4.2.6. Involving Laymen Expertise

The Agile Manifesto is quite explicit in valuing »customer collaboration over contract negotia-

tion.«18 In this respect, agile SD has a profound strength on offer that can be harnessed for IT

security. Our study participants left no doubt that a good deal of IT security has to be managed

not by those who have developed the software, but by those effectively running or using it, i.e.

customers, employees, IT operation divisions, or end users [E10, E14, E18, E21]. Also, deployment

is part of the complete SDLC, and in the deployment phase security issues may arise as well

[E15]. Moreover, there is a trend towards separating SD from IT departments (both in-house) with

misunderstandings or issues possibly occurring at the point of transition: operators may lack suf-

ficient knowledge concerning security-relevant aspects of the software being operated, and they

may not know how to monitor and check the software systems for security issues, even if tools

are available [E14]. In this sense, human beings may create potential security gaps [E18, E19],

and some experts argued that security eventually is only definable by customers/users [E1, E2],

therefore software systems shall be developed in reference to them [E21]. In this sense, one of the

ways to narrow the human security gap is to produce systems that are easily usable. Quite gener-

ally, usability gains relevance [E4, E8, E18, E20] as a security factor because of software becoming

invisibly embedded into physical space thus invoking safety issues [E4], because of software

governing ever more aspects of everyday life [E18], and because of the complexity of software

systems [E16, E18, E20]. At the same time, however, if anything, customers and end users com-

municate security requirements insufficiently at best [E1, E2, E3, E7, E10, E11, E15, E18, E23]. The

same applies the other way around: risk assessments [E10], for example, and security levels of a

given software are often improperly communicated to end users and customers [E9]. By involving

customers and end users more systematically, agile SD promises to improve usability, and by doing

so, to harness the expertise of those who effectively use the systems. Achieving this requires to

integrate not only security, but also usability as early as possible into the SD process [E4, E18].

4.2.7. Lessons to Be Learned

As we could see, our analysis reveals a number of implications agile SD has for IT security. There

are the following lessons to be learned from the experts’ statements:

 � developers’ Expertise:

The permanent change in requirements which is accounted for in agile SD, the changing

roles of team members and the stress on the individual increases the relevance of individual

developers’ security expertise. Developers must be able to consider security implications of

new features factored into the system, and they must have the skills to deal with security

issues no matter what role they play in what project. From this there follows the challenge:

 � Improvement of developers’ security education.

18 www.agilemanifesto.org/

10.10.13

30

 � scalability of Expertise:

Still, responsibility for security cannot be shifted entirely to individual developers. There must

be systematic integration of security processes, including having security experts at central

positions who distribute expertise as widely as possible throughout the organization; who

coordinate testing, feed detected vulnerabilities back into the SD processes, and so on. From

this there follow four lessons:

 � Integrate security early on in the SD process (specifying security requirements, threat

models, solutions) is mandatory.

 � Installing systematic security processes, including immediate feedback and fixing is

required.

 � There is a need to make sure to employ a sufficient number of security experts and

enable scalability of expertise.

 � Enabling security experts to develop expertise also in agile SD makes them know how to

integrate security in lightweight SD methodologies.

 � preservation of Expertise:

While agile SD is about adapting rapidly to changing circumstances forced by market pres-

sure, software systems tend to run for quite a while. This makes it mandatory to preserve

expertise and knowledge and to trace decisions that went into constructing the system. To

achieve this, there is a range of measures that can be taken:

 � Development of documentation strategies which are feasible in practice.

 � Ensuring that organizational learning is possible.

 � Development of techniques that allow to capture knowledge and expertise more easily.

 � Development of metrics to measure maturation of security processes and software products.

 � involving laymen Expertise:

Industry and research are called upon to take usability seriously, if it comes to security. Thus:

 � Usability must be integrated into the SD process early on by involving customers/

end users.

 � To this end, finding still better ways to involve customers/end users is desirable.

4.2.8. Interlude: A Hybrid Methodology on the Horizon?

The statements of our interviewees suggest that there is a need for the emergence of a hybrid

SD methodology which combines the strengths of agile and waterfall approaches and is able to

incorporate the benefits of agile SD without being based on its at times unrealistic assumptions

concerning actual working environments (e.g. accounting for distributedness, s. below). In

fact, what is striking is that many respondents indicated that in practice there are rarely pure

waterfall or agile SD processes observable; instead, there is either co-existence of sequential

31

(waterfall) and agile SD methodologies in one and the same company, or there are hybrid

methodologies already implemented [E3, E4, E6, E8, E13, E16, E17, E22]. Accordingly, some

experts expect a new formal methodology to emerge [E1, E2, E3, E23] that integrates the

light-footedness of the agile approach with the capacity to capture and preserve expertise and

knowledge that plan-based techniques feature. A weakness of the agile SD process, experts

held, is that it tends to increase the dependency of companies on individual developers [E22]; in

some cases, such a dependency may threaten to ruin those companies if particular developers

leave [E4]. Moreover, given the dynamics and the »distributedness« of SD processes, from the

companies’ point of view it becomes necessary to introduce techniques that allow for continu-

ity in spite of permanent change. Thus, one participant criticized that agile SD is based on the

assumption of a single production site, with all the developers involved being able to commu-

nicate face-to-face and in real-time [E3]. As far as the trends we identified so far are accepted

as true, SD to a great extent is or will be rather characterized by independent teams that are

geographically distributed on a global scale, perhaps working on project-based contracts, with

individual developers writing or generating code pieces that will be assembled and integrated

into one overall system [E3]. In addition, the systems which are to integrate those pieces may

have already acquired complexity in the course of a considerable system’s history. As systems

evolve it is necessary to dispose of appropriate SD methodologies allowing for as it were

channeling this evolution. However, existing methodologies generally tend to be based on the

assumption of SD from scratch, with the SD process having a precise »point zero«; hence, what

is required is a notion of »evolutionary development« [E5] that allows to consider software

systems as emergent ones at the outset.

Against the background of these considerations, the hybrid methodology to emerge will be

required to allow for the following things:

 � to reconcile large-scale projects and management with flexibility on the actual SD level [E17];

 � to allow for introducing agility also in the »safety-world« where accurate documentation is

mandatory to get one’s product certified [E19];

 � to make sure at the outset that long-running systems being maintained and modified by

varying staff can be cultivated – developers taking care of V10.0 need to be able to under-

stand the coding of V1.0 [E22];

 � to reconcile formality (to capture knowledge [E1, E2, E3, E22] and afford scalability [E1, E2])

and leeway (to get the job done [E22] without stifling creativity [E1]);

 � to keep code comprehensive also under the condition of distributed SD, with developers

possibly being mobile and contributing small code portions to the assembled overall

system [E3];

 � to account for the evolutionary or emergent character of many actual software systems.

32

4.3. code generation and assembly of (prefabricated) code

According to about half (12) of our study participants, today’s SD entails relying on a manifold

of resources: instead of working in an isolated way, developers generate and sometimes

also share code. Thus, there is a tendency to not write code directly anymore but to develop

software on a more abstract level [E12], either by delegating code generation to tools or by

assembling pre-fabricated code. Thus, many experts pointed to a massive increase in using

frameworks [E12, E13, E15, E22] or to the possibility of model-based SD where domain experts

define the system’s requirements, the underlying code of which is then generated automatically

[E4, E18, E19]. Another relevant trend is what we will call the »democratization« of SD. In

this respect, many respondents stated that nowadays it is increasingly easy for non-software

developers to assemble pre-fabricated, reusable code bits, say, to develop apps, for instance

[E3, E5, E10, E11, E12, E18, E19, E22, E23]; this allows also end users to indulge in the task

of programming within pre-defined limits (»end user programming«, [E4]). Another aspect to

this trend is the emergence of crowd sourcing development. This not only threatens to render

the jobs of moderately skilled software developers superfluous, but also transforms the task of

developers working for companies: the latter are asked to be able to manage a crowd sourcing

social network in the first place, which is why hiring companies will focus on project manage-

ment skills rather than on excellent programming skills [E3, E12]. Thus, the role of software

developers is to manage the production of software being produced externally (as Open

Source, crowd sourced or outsourced components etc.), and to make sure these components

are integrated into a »global« system [E3, E5, E10, E11]. To be sure, while more than half of

the experts interviewed stressed the trend towards assembling and generating code, three

respondents clarified that the automation of code generation has its limits, and that for the

time being there won’t be any total automation of programming [E1, E2, E4]. Nevertheless,

there is a clear indication that the trend towards generating and assembling code is likely to

increase in the future. In this section, we will map the security implications going along with

the different aspects of this trend.

4.3.1. The »Democratization« of Software Development

By »democratization« we refer to the fact that ever more non-experts, i.e. people who are not

formally (or not at all) trained as software engineers start developing applications [E3, E10, E12,

E23]. These »laymen developers« may acquire coding skills on websites such as codeacademy.

com or create apps without having any coding skills at all. For example, at http://www.maz-

digital.com/ print publishers are provided with software to develop apps that allow for moving

print content to smart phones. The website reads: »No Programming Required. Seriously. You

don’t need to be a developer to have an app. If you are able to navigate this website, then

you are qualified to create a MAZ app.« In such environments the ability to write code quite

33

obviously has become less important. This also applies to companies’ permanent app designer

staff: it cannot be taken for granted that they have been trained as software engineers – they

might be graphic designers etc. [E23]. Idea-to-market-cycles in app markets have become

extremely short, in some cases ideas are realized and rolled out within one week [E23], and

some of the apps being produced in this way meet with breathtaking success. The security

issue arising from this, according to our experts, is that potentially vulnerable or unreliable

pieces of code are introduced to the code-ecosystem [E3, E23]; self-learned developers tend

to be rather unaware of security issues [E10, E12], and given the rapidness of idea-to-market,

there is very little time to take care of security in any case [E12]. If we combine these findings

with the insight that there is a convergence of domains – including security and safety domains

(for example, a smart phone connected to a car’s software system) – security implications

are huge indeed [E12]. The question arising is how to integrate security into self-teaching

and do-it-yourself code generating platforms [E12], for example by introducing easy to grasp

guidelines; by providing robust, intrinsically secure code pieces [E23] (we will discuss this idea

below again); or by creating components that are able to interact with an environment that is

insecure in general [E5].

4.3.2. Generating Code in Industrial Software Development

Also, in more classic industrial software engineering there is a trend of developers increasingly

relying upon tools which help them to generate code, such as Integrated Development

Environments (IDEs) [E16], frameworks and libraries [E5, E15]. Experts pointed out that the use

of frameworks and IDEs somewhat facilitates SD as they let developers do their job on a more

abstract level, while the framework takes care of issues such as security. This may increase the

latter [E12]. The same goes for Domain Specific Languages [E4]. Moreover, expertise, say as

regards specific programming languages, may be incorporated into frameworks thus decreasing

the need for individual developers to be experts in a particular language [E13]; this may come

as a relief, for it seems impossible for individual developers to keep pace with rapid innovations

in the manifold of programming languages – and tools are deemed to have the potential to

counteract the security issues arising from this [E14]. Still, there are some problems:

 � framework acquaintance:

When delegating security to the framework, the latter’s owner is the one who is in charge of

making sure the code to be generated is secure [E12]. The problem that occurs here is that

security issues arising on the lower levels of abstraction cannot be solved on the higher

ones; in other words, if the code generator is robust and does not introduce vulnerabilities

all the products that are generated are likewise robust [E11, E15]. In this sense, there is a

trade-off: the uncertainty on the lower levels of abstraction goes along with an increase in

the basic security concept [E11]. For these reasons developers are bound to know their

34

framework very well; if developers do not know a platform’s weaknesses its usage may in

fact decrease security; provided they have detailed knowledge the framework’s presetting

facilitates secure programming, though [E15].

 � proliferation of frameworks:

In this sense, the proliferation of frameworks themselves may pose a threat to security in

that it may overburden developers with »framework proficiency.« Also related to the prolif-

eration problem is the difficulty in harmonizing components that were produced by relying

on different code generating tools – it may be hard to keep track of the overall system, or

inconsistencies within the system may arise due to too many tools producing inconsistent

»meshworks« [E15, E22].

 � round-trip Engineering required:

Another problem with code generation identified by one of our respondents is its one-way

character. That is, if the generated code is modified ex-post, these modifications are not fed

back on to the modeling level. If the system is modified on the modeling level, say for a 2.0

version, modifications at source code level are not preserved, and this may lead to inconsis-

tencies [E16]. What is required therefore is round-trip engineering tools that allow for consis-

tency on any level of abstraction.19

 � improving Tools:

Quite in general, experts demanded further innovation in the framework and model-driven

SD (MDSD) realm. As regards the latter, there is a need to render the source code building

blocks generated by MDSD intrinsically secure so as to render the systems secure that

domain experts produce [E19]. Another desideratum frequently mentioned was the integra-

tion of security techniques, cryptographic techniques, and (e.g. static) analysis tools into

frameworks and IDEs [E11, E12, E13, E14, E21], and the integration of automatic repair

functions in analysis tools [E21].

Although there is no valid empirical evidence so far that code generation improves security

[E21], automation of security via code generation, according to our experts, promises to

increase security. The improvements listed here may contribute to this.

4.3.3. Sharing Reusable Code (on the Web)

The possibilities for developers – be they app designers or concerned with huge long-running

systems – to exchange expertise and reusable code have certainly increased in the last decade.

Therefore we asked our experts about the risks associated with interactive cross-enterprise

communication via fora such as stackoverflow.com; and with sourcing 3rd party code on the

19 E.g. see the Roundtrip

Engineering NG tool at

www.uml-lab.com/de/

uml-lab/features/roundtrip/

(11.10.13).

35

web. As far as communication is concerned, experts considered a – very, very moderate – risk

to overshare internal information, thus compromising business secrets or making vulnerabilities

public [E6, E10, E12, E13, E14, E15, E20, E21, E23]. However, while many respondents saw

individual developers responsible for not oversharing [E1, E2, E6, E10, E18, E19, E20], they

were eventually very positive about exchange and communication, because of the »wisdom

of the crowd effect«: rendering a solution robust by exposing it to so many peers [E4, E6, E7,

E10, E11, E13, E14, E15, E18, E19, E23]. Still, experts mentioned the problem of unconsidered

solution sharing or even the reuse of code in general [E1, E2, E11, E16, E22]. Yet, while some

respondents restricted the »unconsidered sharing«-problem to developers who are not trained

well-enough [E19, E6] or lack an analytic attitude [E11, E16], one expert mentioned the time

pressure in the software business as a factor that drives developers to integrate solutions found

on the web in a rather incautious way – there’s no time to check for security [E22]. Yet, even

if developers re-use »internal« code via »copy&paste programming«, issues may arise [E1, E2].

Problems aside, the bottom line was that experts ranked the positive effects of sharing and

exchange definitely higher than the drawbacks. If companies implement internal fora [E19],

establish explicit sharing policies [E21], or invest in developers expertise [E6, E19], the wisdom

of the crowd effect can be harnessed while mitigating the risks.

4.3.4. Crowdsourcing Software Development

In close proximity to the latter phenomenon is another trend mentioned by our experts, namely

crowdsourcing software development [E12]. In crowdsourcing SD, companies publish an open

call to contribute to the development of a given product, including the contribution of portions

of code. Software development thus is transformed towards managing a social network or

infrastructure, such as mechanical turk [E12]. If the trend is going to prevail, companies, rather

than searching for excellent coding skills, will accordingly watch out for developers with project

management skills who are able to coordinate the assembling of code in distributed settings

[E3]. In terms of security, there are some risks associated with crowdsourcing, such as adversar-

ies designing vulnerabilities into systems, introducing bugs, or manipulating the sourced crowd

[E12]. Chances are that the trend is significant considering that there are major players in the

software industry that have already accomplished crowdsourcing projects, such as Microsoft

and Oracle. Also, computer science research has already begun to address the phenomenon.

In a recent paper, Wu/Tsai/Li allude to security issues associated with crowdsourcing when

writing that »software crowdsourcing is different from general crowdsourcing (…) most

code developed by the crowd carries no liability in case of damage« (Wu/Tsai/Li 2013: 59). As

crowdsourcing is a rather novel phenomenon there is no detailed evidence yet as regards the

security issues it elicits. Yet, it is easily comprehensible that crowdsourcing has the potential to

evoke legal and technical issues. This calls for increased research in this area.

36

4.3.5. Lessons to Be Learned

Our trend analysis points to a number of lessons to be learned as regards the trend towards

more generating and assembling (instead of writing) code. Generally, there have to be found

ways that guarantee security is incorporated into the code that is produced or shared. This can

be achieved by the following measures:

 � »democratization« of sd:

In respect to the »democratization« of SD, security can be integrated into SD by either

strengthening the expertise of »laymen developers«, or by automatizing secure SD:

 � Introducing security guidelines for career changers, i.e. developers originally not being

trained as software engineers in companies and self-teaching platforms.

 � Providing self-learned developers with robust, possibly intrinsic secure code pieces.

 � Providing components that are able to interact with an insecure environment.

 � generating code in industrial sd:

As regards code generation, the aim is to improve tools, to make them more trustable, and

to coordinate their usage.

 � Incorporating security into IDEs, libraries and frameworks. This pertains to the code

generated and to the integration of security techniques such as cryptographic and analysis

tools (static analysis, copy&paste-coding analysis) as well.

 � Facilitating round-trip engineering so that there is always alignment between the abstract

modeling level and the actual coding level.

 � Introducing framework security certification in order to guarantee the trustability and reli-

ability of frameworks.

 � Harmonizing the repertoire of the tools being used, so that there are no inconsistencies

arising from the diversity of tools.

 � sharing reusable code:

The secure sharing of code can be achieved by taking measures relating to education and

coordination.

 � Training developers – if anything, assembling and generating code makes individual secu-

rity expertise more relevant, instead of less.

 � Considering establishing internal sharing platforms and explicit sharing policies.

 � crowdsourcing sd:

Crowdsourcing SD is a relatively novel phenomenon, thus it has to be researched.

 � Researching the implications of crowdsourcing SD for IT security empirically.

37

As far as our experts are concerned, there was one more aspect to the assembling & generating

code trend: the integration of open source repositories and libraries. As this phenomenon also

concerns the trend towards modularized software and compositional systems, we will treat it in

the next section.

4.4. compositional systems and modularization

Experts explained that in industrial SD there is a strong focus on the production of standardized

software modules that may be recomposed to software systems according to the context of

any particular use case and the specific requirements a given customer demands [E3, E11, E17].

Quite obviously, if it comes to the modular design of compositional software systems there is

a profound interplay between the social and technical organization of SD. That is to say, the

geographical distribution of SD to a certain degree necessitates the compositionality or modular

nature of software systems, whereas the compositionality of software systems facilitates the

geographical distribution of SD. From our experts’ account it follows that modular production

can be expected to play an ever greater role in the future [E5, E7, E11, E17, E20, E23]: there

is an economic imperative to integrate externally produced code pieces and software modules

including open source components [E1, E2, E20]. The composite nature of the resulting

software systems has multiple implications for IT security. Although being interconnected, in

what follows we will first consider problems from the perspective of the components; second,

we will treat issues from a system’s point of view. We will again conclude by providing a listing

of lessons to be learned.

4.4.1. Modular Components

Generally speaking, compositional systems render the reliable interplay of the components

making the system up more important [E3]. At the same time, however, one of the major

implications frequently mentioned by the experts was the problem of guaranteeing the security

of an overall system which was produced by multiple stakeholders. There are non-technical as

well as technical problems with guaranteeing such reliability:

 � Trustworthiness and reliability of partners:

First of all, software vendors who sub-license parts of their system oftentimes work with

partners whom they, as a matter of principle, can trust only to a certain extent [E9, E17]. We

treated this problem already above when discussing the social security aspects of distributed

SD, yet we would like to reiterate the statement that supply chain security is of increasing

importance [E3, E12, E18, E21].

38

 � measuring components’ security

However, even if collaborating partners have reasonable evidence of each other’s trustwor-

thiness there are security issues stemming from technical security aspects associated with the

composite nature of software systems: even if a software component is delivered by a long-

term collaborating partner, the entity being responsible for the overall system cannot be

downright sure whether there are vulnerabilities contained in the component being deliv-

ered: there can’t be absolute certainty about the integrated component [E4, E6, E10, E20],

regardless of whether one does or does not presume malicious intent. This results in the dif-

ficulty of guaranteeing one’s own overall system, as undetected vulnerabilities in external

components may generate vulnerabilities in the resulting system [E6, E17, E18]. The main

reason for this is that up to date it is still extremely difficult – perhaps impossible – to mea-

sure or guarantee, let alone reliably certify, the security of integrated OS or other compo-

nents [E1, E2, E4, E17, E18, E21].

Although there are good reasons to assume that the external component – proprietary or open

source – has been put to the scrutiny of a lot of experts [E6], the impossibility to measure,

guarantee and certify the security level of a given software makes it even more important

 � to explicitly specify security requirements upfront [E3, E13];

 � to never integrate external components as black boxes [E16], especially in safety-areas [E6];

 � to have a clear understanding of the integrated component’s code [E7];

 � to test security relevant components and raise security relevant parameters [E6];

 � to continuously integrate new features or code portions [E1, E2];

 � to check and safeguard the compatibility of the code base produced in-house with the

code being integrated [E18, E22]; and

 � to reduce the attack surface by deactivating the external component’s functionalities that

are not being used [E1, E2, E6], which requires developers to have an intimate knowledge

of in-house and of externally produced code.

In addition, as it is not possible to have absolute certainty as regards the component’s behavior,

the latter may be encapsulated so to cause harm only locally if things go wrong [E4, E20].

4.4.2. Compositional Systems

Now, if we shift the perspective from the components to the overall system, the problem does

not concern guaranteeing components’ security, but the resulting system as such. According

to the experts, the fundamental problem is that while two components may be secure when

running separately, their combined interplay may be not [E1, E2, E10, E11, E17, E18]. In other

words, two secure software components do not necessarily make for a secure compositional

39

system. The problem poses significant challenges, not least because of the context dependency

of any security assessment. According to our interviewees, the security level of a given software

system is in principle only determinable if one considers the system in context [E1, E2, E10, E12,

E17, E20]. At the same time, however, compositionality invokes the production of components

that are produced at the outset to be integrated into different products (contexts). This goes for

large software companies that aim to produce standardized off-the-shelf components which

are then reassembled for any specific use case, thus composing a system tailored to the particu-

lar needs of any one customer [E11]; but it also goes for a mode of production that is expected

to gain momentum in the future: the production of standardized core components which

are produced by outsourced entities or freelancers who at the outset will fabricate reusable

components as potential resellers [E3]. Hence, modular components, whether company-internal

or contract-based products, must quite obviously be adaptable to multiple contexts [E3] with

the characteristics of the latter not being specifiable upfront [E17, E12]. Experts mentioned

three strategies to cope with this:

 � new Testing procedures:

Experts again brought up the dire need for the development of formal and automatable

testing procedures, and for the specification of valid indicators concerning the static and

dynamic qua-lity and security attributes of compositional systems [E1, E2, E9, E17, E18,

E21]. Also, it will be necessary to find ways to test20 [E21] and formally specify the security

relevant characteristics of the components: in what kind of environment has a modular com-

ponent been tested and proven to be robust and securely applicable [E11]? The interplay of

multiple components, i.e. the collective security performance of the components may then

be automatically assignable by setting their formal specification in relation [E11]. This may

help developers to keep track of the overall system, which is quite difficult in compositional

systems [E10], not least because of the complexity of these systems aggravating the detec-

tion of vulnerabilities [E11].

 � setting collective interface standards:

Another fruitful strategy, according to experts, will be to detach interfaces from proprietary

products so as to effect improvement (more robustness) and establish interface standards

collectively [E11].

 � intrinsically secure components:

Experts expressed their hope that in the future ways will be found to produce intrinsically

secure and reusable building blocks, or modular components, that can either be put

together at will without compromising security [E19]; or that are able to interact within inse-

cure environments without compromising security [E5]. Whereas one study participant was

rather skeptical about the possibility of generating inherent system security [E17], the

20 Related to the con-

text issue there occurs a

testing issue: the real test

is always the system run-

ning in the wild, i.e. its real

environment, thus pre-

testing has its limits [JE].

This follows logically from

the »unspecifiable-context«

problem. For, saying that

the context is not com-

pletely specifiable amounts

to say that neither is the

tested system‘s environ-

ment – which is where

the limitations of testing

come in.

40

respondent nevertheless expressed the importance of arranging for secure components thus

agreeing with many experts on the need to invest in R&D in this area [E5, E10, E17, E19].

Along with the desideratum of technically securing modular components comes the one of

certifying [E17] and legally guaranteeing component security [E10].

4.4.3. Lessons to Be Learned

Generally speaking, compositionality and modularization entail a profound paradigm change as

regards security. As one interviewee pointed out, monolithic security solutions that cover whole

areas are a thing of the past [E5]. In this sense, the challenge will be to introduce security to

compositional systems, although security itself is not a modular or compositional property [E4,

E17]. Here is a summary of what we learn from the experts’ statements:

 � component’s perspective:

Regarding components, the challenge is to determine the collaborating partners’ trustwor-

thiness and reliability as far as this is possible and to protect oneself as far as it is not; and to

somehow measure a component’s security, so far in absence of precise metrics.

 � No integration of external components as black box [E16], especially in safety-areas [E6].

 � Rigorous testing of security relevant components and raising of security relevant parame-

ters [E6].

 � Continuous integration of new features or code portions [E1, E2].

 � Clear understanding of the integrated component’s code [E7], checking and safeguarding

the compatibility of the code base produced in-house with the code being integrated

[E18, E22].

 � Reducing attack surface by deactivating the external component’s functionalities that are

not being used [E1, E2, E6].

 � Development of encapsulation techniques for integrated components [E4, E20].

 � system’s perspective:

From the point of the system’s view, what is chiefly required is research and development

testing, specification, standardization and certification procedures.

 � Development of formal and automatable testing procedures and specification of valid

indicators concerning the static and dynamic quality and security attributes of composi-

tional systems [E1, E2, E9, E17, E18, E21].

 � Formal specification development of the components’ characteristics.

 � Collective establishment of interface standards.

 � R&D of intrinsically secure building blocks / components.

 � Development of modular instead of monolithic security strategies.

 � Certification and legal guarantee of components’ security.

41

4.5. Distributed Systems and Intensified (Cross-Domain)
 networking

According to our experts , the intens if ied networking of a lmost everything,

inc luding cross-domain systems, distr ibuted funct ional features and distr ibuted

systems has a l ready begun to play a greater role a whi le ago and can be con-

s idered a s ignif icant paradigm shift [E19]. Many interv iewees assume that the

intens if icat ion of networking is going to pers ist [E19], not least because of the

economic incent ive of network external i t ies [E12], which – roughly speaking –

render systems the more valuable the more they are networked. Networking

and distr ibut ion amounts to open up systems [E19], and secur i ty impl icat ions

are huge [E12]. To state an obvious example, problems of author izat ion and

authent icat ion v is-à-v is other network components poss ib ly shift if there is no

centra l management anymore [E13]. There are numerous further aspects to the

secur i ty i ssues that distr ibuted systems ra ise. In what fol lows we wi l l t reat

them success ive ly before l i s t ing lessons to be learned.

4.5.1. Security Specification in Distributed Systems

Some of the challenges that distributed systems and intensified networking pose to IT security

are quite similar to those that were identified in reference to compositional systems. First and

foremost, also in distributed systems the problem of specifying, guaranteeing and certifying

quality and security is thus far not solved; neither is it possible to provide universal specification

of a distributed system’s possible course of events [E17]. Moreover, distributed systems are

highly dynamic. Unfortunately, while it is possible to guarantee security (and safety) at the

point of design, it is not possible when systems run that are subject to dynamic change [E4,

E17]. For this reason, it is required to develop indicators, techniques and (affordable) tools that

allow for runtime-dynamic system testing in real-time [E10, E16, E17].

4.5.2. Cross-Domain Systems

Further problems arise when the fact that distributed systems involve the networking of various

elements is taken into account. In this regard we come across the problematic again where

two secure components do not necessarily make for a secure system. Likewise, the problem

of how to secure the whole system reoccurs. There, raising the components’ intrinsic security

is used as a strategy to at least mitigate the problem [E17]. The problematic is aggravated by

the existence of cross-domain networking, involving systems from different areas, as is the case

when smart phones are connected to cars for example [E12, E17, E19]. As a result, sub-systems

that use different types of protocols and programming languages together form networked

42

systems [E12]. Further, those sub-systems have been developed with different foci in mind, rely-

ing on diverse modes of modeling and tools [E19]. The inherent heterogeneity of such systems

threatens to cause security problems and calls for ways and tools that allow for the secure

integration of this heterogeneity [E12, E19]. Thus, requirements regarding the engineering of

complex distributed systems will gain relevance, just as the provision of tools will that allow for

understanding and controlling such system behavior as far as this is possible [E19].

4.5.3. Safety & Security in Distributed Systems

Yet, cross-domain networking still has further implications. As a fundamental issue, the amal-

gamating of IT has been mentioned by many experts on the one hand; on the other, embedded

devices, physical systems, or critical infrastructures have received attention. This will make

security and safety converge even more [E4, E6, E10, E19]. To take up the aforementioned

example: when connecting a smart phone to a car in order to use a satnav app while driving,

the integrity of the traffic data provided by the app may affect safety profoundly – if things

go wrong, the driver might have an accident. Therefore, according to experts, whereas both

of these worlds have, in fact, already merged in practice, so far engineering only knows how

to cope with security and safety separately [E4]. Additionally, while awareness levels in safety

areas are naturally quite high, awareness in other areas of SD still needs to be raised [E7].

However, if security does affect safety, awareness in (so far) non-safety areas will become just

as important. For example, physical systems and their control systems were originally not meant

to be connected to digital networks, such as the internet. Yet, when these systems became

cyberphysical ones, those critical infrastructures became connected to the internet rather incau-

tiously, which is why they have been proven vulnerable to attacks21 in the recent past – and

such attacks are increasing in the present.22 Consequently, in the future their being connected

requires awareness for integrating security right from the outset [E6],23 and more R&D in regard

to embedded software and cyberphysical systems [E7].

4.5.4. Cloud Computing

Distributed and networked systems may combine critical with uncritical and secure with

insecure sub-systems. The challenge is enabling them to coexist in the same network without

compromising security. In this regard experts stressed the need to develop techniques to encap-

sulate or separate critical/secure from uncritical/insecure sub-systems, e.g. by creating »virtual

cages« that contain insecure components [E4, E5]. Separation was likewise considered a fruitful

strategy to deal with data in cloud computing (understood as one particular form of distributed

computing): non-sensitive data may be separated from sensitive data, the former being stored

in low-security clouds while the latter is to be stored locally or in high security cloud environ-

ments [E10]. Obviously, such strategies presuppose that developers give thought to the nature

21 www.heise.de/

security/meldung/Kritische-

Schwachstelle-in-hunderten-

Industrieanlagen-1854385.

html

22 www.heise.de/

security/meldung/Attacken-

auf-SCADA-Systeme-

nehmen-zu-1910037.html

23 This is actually true

regardless of whether those

systems are connected or

not: also, closed systems

fell prey to attacks in the

past as the case of stuxnet

attacks on SCADA systems

amply demonstrates [E18].

See also http://www.heise.

de/security/meldung/Inne-

nangreifer-half-bei-Stuxnet-

Infektion-1520408.html

43

of different types of data. Experts also held that there are new security requirements for soft-

ware running in the cloud [E1, E2]. Central provider management of software was considered

an advantage and disadvantage at the same time: on the one hand, central control amounts

to providers having detailed knowledge of the use case and allows for immediate and very fast

security response processes without retroactive patching by sending updates via the internet

[E1, E2, E10, E12, E22]; on the other hand, the numerous entities who use cloud services can

now be attacked simultaneously (there is a central point of attack); and they lose control of

their data to a considerable degree [E1, E2, E10]. Therefore, and also because of cloud comput-

ing entailing a different kind of business model, there are plenty of legal issues to be solved:

the interviewees stressed particularly a certain under-regulation of liability in cloud computing

concerning data security and protection in terms of storage, access, control, notification duties

etc. [E7, E9, E18, E21]. The questions to be posed are well-known.24 While experts particularly

emphasized the need to come to international agreements on these matters [E4, E9], others

expressed their hope in the coming ISO/IEC 27017 norm which is bound to regulate »controls

to protect personally identifiable information processed in public cloud computing services.«25

4.5.5. Lessons to Be Learned

Thus, in sum, our listing of lessons to be learned includes the following issues:

 � Security Specification in Distributed Systems:

Regarding security specification, there is a demand for the development of techniques that

would allow the security level of distributed systems to be determined.

 � Finding ways to specify, guarantee, and certify quality and security in distributed systems.

 � Enabling universal specification of DS’s possible course of events.

 � Developing indicators, techniques and (affordable) tools that allow for runtime-dynamic

testing in real-time.

 � Raising DS components’ intrinsic security levels.

 � cross-domain systems:

Cross-domain systems call for an amalgamation of perspectives and techniques from differ-

ent domains.

 � Developing ways and tools to integrate cross-domain (heterogeneous) DS components.

 � Improve strategies for requirements engineering and understanding complex cross-

domain DS.

 � safety & security in distributed systems:

In respect to safety & security in DS, the challenge is fusing the analytical tools of the safety

and the security world.

24 E.g., what about the

storage location? Who may

have access, including gov-

ernment authorities? To what

extent shall encryption be

allowed? How to balance

anonymity and law enforce-

ment? How to issue, inspect,

and verify security guaran-

tees? Who‘s liable in case of

data breaches, and how to

call responsible entities to

account? [E9]

25 www.iso27001security.

com/html/27018.html

44

 � Development of ways to fuse security and safety concepts and strategies.

 � Raising awareness for security in safety areas; and for safety in security areas.

 � Integrating security in embedded software and cyberphysical systems early on.

 � Fostering R&D in embedded software and cyberphysical systems.

 � cloud computing:

There are various issues related to cloud computing, our experts focused on two aspects.

 � Separating sensitive form non-sensitive data in Cloud Computing and treat it accordingly.

 � Solving legal and especially liability issues in Cloud Computing, at best via international

agreements.

4.6. legacy: The complexity of Evolved software Ecosystems

Today software development is – to a considerable degree – about developing software systems

further, instead of developing software from scratch [E1, E2, E5, E6, E10, E21]. Many large

software systems live much longer than initially expected in the days of early SD [E4]. Some

software systems have a long-running history and are often-times the result of numerous,

varying actors establishing and modifying the code base for years – and sometimes decades.

Such code bases are the legacy contemporary developers have to deal with. Legacy threatens to

provoke practically unmanageable complexity [E16, E20], and the problems it brings about are

multifaceted. In the remainder of this chapter, we will present these issues as identified by study

participants and draw the conclusions associated with these aspects.

4.6.1. Unknown Past Decisions and Fading Expertise

In the absence of appropriate documentation illustrating assumptions and design decisions that

went into system production and due to their rising complexity, at some point these systems

become largely incomprehensible [E6, E20, E22] and difficult to maintain [E3, E10]. Aggravating

the problematic is the shortage of developers with profound expertise as regards elder systems

and the programming languages these systems are based upon [E3, E6, E13, E14, E16, E22,

E23], such as COBOL. Developing those systems further is thus tantamount to flying blind,

since developers, not knowing underlying assumptions of the system’s design, in principle can-

not know the implications of their own decisions and code modifications [E12]. It is generally

not possible to anticipate the behavior of complex systems with certainty [E20], and limited

knowledge of the adopted system also threatens to concurrently adopt too many unused

functionalities, which in turn enlarges attack surfaces [E6]. Furthermore, issues arise when new

components that were produced by relying on novel coding techniques are to be integrated

into legacy systems produced using obsolete techniques [E14]. Yet, even if the code base and

the design decisions are reasonably well known, legacy induces a certain path dependency,

45

limiting the modifiability of systems [E10, E22]. Last but not least, legacy also involves problems

with testing. It is not only generally difficult to conduct risk assessment of large complex

systems [E1, E2], but also new features accessing old code are quite difficult to test for security

[E18].

4.6.2. Dealing with Legacy Today

These issues quite obviously raise two questions: how are legacy systems to be handled today?

And how can producing legacy problems be avoided in the future? Here we will deal with the

first question; the following section will be devoted to the second one. Thus, as regards cur-

rently dealing with legacy inherited from the past, the final analysis of the experts’ statements

reveals three strategic options:

 � isolation/Encapsulation:

Pragmatically isolating or systematically encapsulating untrusted legacy functional building

blocks is one of the options to deal with past legacy [E4, E19, E22]. Due to its pragmatic

nature, it may also be the most attractive one to industrial SD. One expert gave the example

of partly isolating some legacy component by limiting communication between the latter

and the overall system so as to mitigating risks [E22]. Due to the largeness of the systems in

question, however, the problem may already be telling what components should fall under

scrutiny. In this regard, stochastic techniques to tell developers what components are at risk

need to be developed or applied [E20]. The reader will note that the encapsulation strategy

was already highlighted as an option to deal with problems related to compositional systems

and to DS (s. above). According to our experts, this requires a strong research focus on

encapsulation solutions so as to be able to build virtual software »cages« easily [E4, E19].

 � analysis and secure Ex-post reengineering of Building Blocks:

The second option, the re-engineering of building blocks [E5, E19, E18] is costly. Integrating

security into building blocks ex-post is difficult and expensive for two reasons: the shortage

of experts for old systems and the lack of using up-to-date engineering tools. Instead of rely-

ing on frameworks or the like, the code base has to be modified manually, which makes

reengineering time-consuming [E14].

 � downright rebuilding of Building Blocks:

The third option, downright rebuilding [E13, E19], requires one to disassemble functional

building blocks in order to rebuild them. This is, of course, extremely laborious, time-con-

suming, and therefore comes at a very high price [E13, E19].

46

4.6.3. Avoiding Legacy in the Future

Considering the multitude of problems legacy systems bring about and the costs associated

with further developing such systems [E23], avoiding legacy problems in the future is extraordi-

narily attractive. However, against the background of the extreme acceleration of SD processes

– in terms of technology as well as of business, today’s innovation quickly becomes tomorrow’s

legacy. Hence, respondents believed that SD processes need to be understood quite generally

in an evolutionary rather than a »from scratch«-mode. Given the »unstableness« of the soft-

ware industry (innovation at a high pace, fast turnover of staff, flexible working environments

etc.), software tends to be modified by other developers than those who originally developed

it in the first place [E5]. If software systems were continuously treated by a fixed set of people,

legacy problems would not occur [E22]. However, as this is not the case, legacy also renders it

increasingly important to find ways to introduce continuity into SD in spite of rapid change. In

this respect, the experts mentioned two relevant dimensions:

 � Knowledge capture:

To avoid legacy, it is important to capture expertise and knowledge as well as preserve

assumptions and design decisions regardless of individual developers. Thus, documentation

and transparency of SD processes become more important and need to be optimized in

reference to legacy [E3, E5, E10, E16]. This includes harmonizing in-house code production

by issuing programming guidelines, resulting in code that is not too condensed and thus still

comprehensible for other developers at a later date [E16].

 � methodologies:

Also SD methodologies should at best reflect the transition from »from scratch« to »evolu-

tion«. Whereas the bulk of SD is in practice about developing systems further instead of

from scratch, methodologies still act on the assumption that SD is generally about new

product development; to prepare developers for their task appropriately methodologies and

education as well should be based on the real situation that developers are confronted

with: facing a lot of legacy [E1, E2, E5, E6]. To give an example, methodologies could

include a stronger focus on long-term maintainability [E5]; appropriate education could

make developers ready for the »practice shock« of being confronted with all the legacy

involved [E6].

4.6.4. Establishing Long-Term Perspectives

Aware that dealing with legacy is an integral part of SD may also somewhat alter the develop-

ers’ or companies’ mentality towards the establishing long-term perspectives. For example, our

experts explained that one may develop and optimize software architecture based on long-term

47

and anticipative considerations in order to avoid legacy problems. In this sense, product

line engineering may be considered a step towards such a long-term perspective, providing

software systems with variability and adaptability [E4]. When producing software systems at

the outset with multiple contexts and changing circumstances in mind, a long-term perspective

should also guarantee the integration of security at the outset, for security specification early

on is another pre-condition for further developing systems instead of SD from scratch [E5, E18].

For example, provided companies have a long-term perspective that prioritizes security from

the beginning, the imperative of backwards compatibility that presently often results in vulner-

abilities [E10] being carried over would not necessarily come at the cost of security.

4.6.5. Analyzing Complex Systems

Regardless of whether one deals with legacy systems produced in the past or strives to avoid

producing legacy in the future, what is required to deal with the complexity that grown

software structures possess are procedures and tools able to analyze security and safety in very

large and complex systems [E1, E2, E4]. With legacy there is much more source code to be

reviewed nowadays. This makes quality assurance much more difficult than in the past [E20].

Experts particularly mentioned the need to develop scalable techniques that allow complex

systems to be broken down and analyzed in aggregates [E4]. Moreover, it is necessary to do the

following: find ways of conducting risk analysis that begin at the top of complex systems and

go all the way down [E1, E2]; stochastically identify components at risk [E20]; and make static

analysis tools scalable for large systems [E4].

4.6.6. Lessons to Be Learned

Having presented our experts’ account of legacy problems so far, we would like to present the

lessons to be learned from the interviewees’ expertise:

 � dealing with past legacy:

Dealing with past legacy requires one to integrate security retroactively into systems.

 � Finding strategies to pragmatically isolate untrusted building blocks.

 � Encapsulation of untrusted building blocks by building virtual software cages.

 � Development of techniques to build security into legacy systems ex-post.

 � avoiding future legacy:

To avoid future legacy, there is a need to build security proactively into systems.

 � Development of smart documentation techniques for expertise and knowledge capture,

and for preserving assumptions and design decisions.

 � Harmonization of in-house code production to keep code comprehensible.

48

 � Development of novel methodologies that account for SD’s »evolutionary« character.

 � Adapting education to the legacy situation.

 � Establishing long-Term perspectives:

Many software systems are indeed long-living entities; establishing long-term perspectives

helps to mitigate path dependency that may limit undesirable non-modifiability due to

wrong decisions.

 � Optimizing software architecture.

 � Introducing product line engineering.

 � Guaranteeing to integrate security early on.

 � analyzing complex systems:

Before being able to manage them, one must be able to understand complex systems.

Therefore, techniques that help to do so are required.

 � Development of tools and procedures to analyze security and safety in very large and

complex systems.

 � Development of scalable techniques that allow for breaking down complex systems to

analyze them in aggregates.

 � Development of risk assessment techniques that go from the top all the way down.

 � Development of techniques to stochastically identify components at risk.

 � Development of scalable static analysis tools.

49

As our interv iew study reveals , there is a number of themes running across

different trends. In our conclus ion we wi l l ident ify and c luster those themes by

summariz ing the major issues l i s ted in the »lessons to be learned« sect ions

above. The ult imate goal of th is report i s not to present solut ions but to direct

the attent ion of those deal ing with software development and IT secur i ty to

the (research) chal lenges brought about by the trends. The chal lenges that

ar ise from experts ’ statements perta in to educat ion, processes, methodologies,

metr ics , techniques, and tools . In what fol lows we wi l l conclude by summariz-

ing them.

 � Education: raising individual Expertise

It has become clear in the course of the analysis that as IT security gains relevance, individual

developers’ level of security expertise becomes much more important. The working environ-

ment of software development is characterized by rapid change, and agile values are gaining

ever more foothold. Thus, there is frequent change in requirements, making it necessary for

developers to have the skills to determine security implications of any change in require-

ments; also, in agile SD team roles are less rigid, so developers are likely to sooner or later

face situations where they need to make security assessments. The increase in assembly and

sharing of code demands a great deal of developers in terms of IT security expertise, too.

Therefore, not only is it desirable that security expertise become more strongly integrated in

developers’ formal education, but it also seems fruitful to somewhat harmonize curricula, so

as to guarantee that at least all computer science graduates have a comparable level of

security expertise by training. That said, it is just as clear that IT security experts are required

to have agility expertise. Last but not least, adapting education to the reality of software

development would mean acquainting developers with agile SD methodologies as well as

preparing them for being confronted with considerable legacy code.

 � processes: systematic and scalable

The latter aspect requires companies to establish long-term perspectives even more in

regards to their software systems and SD processes. The flexibility of SD’s working environ-

ment and the heavy networking of all kinds of systems make having systematic security pro-

cesses in place mandatory, guaranteeing security is integrated early on and requirements are

specified upfront. Likewise, usability has to be accounted for early on. A great deal of proper

SD processes, or so it seems, depends on whether or not effective communication and coor-

dination exists among developers, and between developers and security experts. Conse-

quently, companies need to have a sufficient number of security experts on board, and they

need to have mechanisms that allows for making security expertise scalable. If software pro-

duction as well as software products become modular, security must also do so by design. It

is hardly possible to deliver a concluding security specification upfront by experts which

5. synopsIs and conclusIon: trends In
 software development & future
 challenges for It securIty

50

remains unaltered throughout the whole software development life-cycle so that developers

may stick to it until some project ends. Instead, security expertise has to be conveyed where

and when it is needed. This seems even more important given that many developers nowa-

days are career changers without formal engineering education. Thus, procedures and feed-

back mechanisms for vulnerability detection, bug tracking and fixing are necessary. To avoid

redundancy and associated costs, companies need to develop mechanisms for organizational

learning. As developers may share code and expertise on the web, companies might con-

sider introducing sharing policies. Returning to the long-term perspective theme, we may

conclude by stating that companies may also consider to optimize software architecture and

harmonize in-house code production, so as to avoid running into unmanageable complexity.

 � methodologies: reconciling flexibility with continuity

We dealt quite a bit with methodology in this report. The main feature an up-to-date

methodology must provide for is to make sure there is continuity in spite of constant rapid

change of constellations. The key is to capture knowledge and to preserve expertise and

design decisions that go into software systems’ production. Code must be kept comprehen-

sible not only over a long period for varying cohorts of developers, but also in respect to the

geographical distribution of collaborating actors. At the same time, there must be reconcilia-

tion of formality and leeway. Novel approaches must be able to reconcile agility with long-

term perspectives on software systems if the latter are bound to provide sustainable pro-

ducts. As spelled out above, methodologies – at best – account for the evolutionary or

emergent character of software systems, thus adapting to the legacy situation of having no

precise »point zero.«

 � Techniques: sorting the sheep from the goats

One of the most frequently mentioned techniques that will gain relevance in the future is

the one of encapsulating code or of shielding systems from non-trustable software compo-

nents that interact with some overall software system. The frequent mentioning of the need

to encapsulate networked components drives us to conclude that after years and years of

unhesitating networking, the security issues that have emerged by now begin to induce a

trend to sort out the sheep from the goats where required, of course without turning back

to isolated systems. What research in industry and academia thus needs to focus upon are

strategies to isolate networked components from each other partly, or to encapsulate code

portions by building virtual cages around them. The need for this arises from untrusted leg-

acy as well as from integrating untrusted 3rd party code and from networking with

untrusted external systems. While legacy also brings up the need to make untrusted systems

analyzable and retroactively render them secure, the trend towards assembling code and

compositional systems evokes the need to develop secure software components and code

portions intrinsically.

51

 � metrics: Enabling measurement of iT security

Experts repeatedly brought up the topic of measuring security: there is a lack of metrics

allowing one to measure software components’, open source software’s, compositional sys-

tems’, and distributed systems’ security levels consistently. Likewise, there are no proper

metrics to measure security processes, and given that security and safety tend to fuse to a

certain degree, it is problematic that there be no metrics to measure safety. The absence of

security metrics makes it difficult to introduce widely accepted certification schemes that

may be referred to when it comes to liability issues. The lack of legal guarantees regarding

open source or cloud computing may abate the adoption and further evolution of these

areas of software development. For this and other reasons the development of security

metrics is extraordinarily desirable.

 � Tools: automatizing iT security

To a considerable degree, software development has become automatized. Hence, it is desir-

able to automatize security to the same degree. The integration of security into IDEs, frame-

works, and libraries by recommending or generating secure code is what many experts put

on their list of wishes. The same goes for integrating cryptographic techniques and static

analysis tools with repair function. If it comes to analysis tools, there was repeated mention-

ing of scalable tools that are able to also analyze large complex systems by breaking them

down into aggregates; and of formal and automatable testing procedures that allow for

runtime-dynamic testing in real time, especially to test dynamic, distributed systems. More-

over, the feature of round-trip engineering may strengthen IT security by allowing one to

keep modeling and coding consistent and transparent easily. Last but not least, it may be

fruitful to certify frameworks for security in the future, so as to guarantee that a given

frameworks generates secure code indeed.

Such are the future challenges of software development and IT security. The themes identified

in this report flow in multiple directions. Our study is explorative in character, and our goal was

to identify these very directions. While research addressing some of the issues identified here is

already underway, other issues still wait to be approached. We hope to have inspired readers to

take up some of these issues.

52

Impressum

6. references

Barnes, S. B. (2006): A privacy paradox: Social networking in the United States. In: First Monday 11, No. 9,

URL: http://firstmonday.org/issues/issue11_9/barnes/index.html (8.11.13)

Errata Security (2010): Survey Results – Integrating Security into the Software Development LifeCycle.

URL: http://www.docstoc.com/docs/37556537/Integrating-Security-into-the-Software-Development (8.11.13).

Kühl, S./Strodtholz, P./Taffertshofer, A. (2009): Qualitative und quantitative Methoden der Organisationsforschung

– ein Überblick. In: Kühl, S./Strodtholz, P./Taffertshofer, A. (eds.): Handbuch Methoden der Organisationsforschung.

Quantitative und Qualitative Methoden, Wiesbaden.

Liebold, R./Trinczek, R. (2009): Experteninterview. In: Kühl, S./Strodtholz, P./ Taffertshofer, A. (eds.):

Handbuch Methoden der Organisationsforschung. Quantitative und Qualitative Methoden, Wiesbaden.

Newman, J. (April 2, 2013): Phablets Are a Niche, Not a Fad. In: Time, URL: http://techland.time.com/2013/04/02/

phablets-are-a-niche-not-a-fad/ (8.11.13).

Ponemon Institute (2013): The State of Application Security. A Research Study by Ponemon Institute LLC and Security

Innovation. URL: https://www.securityinnovation.com/security-lab/our-research/current-state-of-application-security.

html (8.11.13).

Schulz-Schaeffer, I. (2012): Scenarios as Patterns of Orientation in Technology Development and Technology Assess-

ment – Outline of a Research Program. Manuscript, URL: http://www.uni-due.de/imperia/md/content/skott/schulz-

schaeffer2012scenariosaspatternsoforientation.pdf (18.2.13).

Spath, D. (Ed.) (2012): Arbeitswelten 4.0. Wie wir morgen leben und arbeiten, Stuttgart.

Steinmüller, K.-H./Schulz-Montag, B. (2004): Szenarien – Instrumente Innovationen und Strategiebildung. In:

Wirtschaftspsychologie Aktuell 1/2004, pp. 63-66.

SwissQ (2013): Agile 2013. Trends and Benchmarks Report Switzerland.

URL: http://www.swissq.it/wp-content/uploads/2013/08/Agile-Trends-and-Benchmarks-2013_Web_En.pdf (8.11.13).

Wu, W., Tsai, W-T. and Li, W. (2013): Creative software crowdsourcing: from components and algorithm development

to project concept formations. In: International Journal for Creative Computing, Vol. 1, No. 1, pp.57–91.

