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Abstract—If a company uses cloud computing services to
process their employees’ or their customers’ personal data,
they need to ensure that the cloud provider complies with the
relevant privacy statues. One of the things that need to be
ensured is that all personal data are processed only in lawful
locations. Data sources that can be used to automatically
determine the current location of data processing could
help cloud users to fulfill their duty and to strengthen the
confidence in a privacy friendly processing of their personal
data. For that, data location metrics need to be defined,
appropriate data sources need to be determined and the
measured data need to be combined reasonable. This paper
describes the procedure and system architecture of such data
location metrics.
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I. CHALLENGE AND OBJECTIVE

For companies that want their customers’ or employees’
personal data to be processed in the cloud, it is essential
that these data are adequately protected.1 Since most
cloud computing services are considered to be contract
data processing, the cloud user stays responsible for his
customers’ and employees’ personal data even if they are
processed by the cloud provider according to European
privacy law.2 Consistently the cloud user needs to verify
that the cloud provider takes reasonable technical and
organizational measures to protect the relevant personal
data. This verification needs to take place before any
personal data are being processed by the cloud provider.
Additionally, the cloud user needs to ensure on a regular
basis that the technical and organizational measures of the
cloud provider are sufficient.3 However, this is problematic
because of distributed computing in cloud environments
and the geographical distances in between the cloud user
and the data centers of the cloud provider. [1]

1This paper has been written within the scope of the project
VeriMetrix which is funded by the BMBF, registration number:
16KIS0053K.

2In general, whoever processes personal data is responsible for this
specific data processing. To stay responsible for the processing of
personal data of a contract data processor is a special characteristic of
the so-called contract data processing. Compare Sec. 11 of the German
Federal Data Protection Act as one example for the European point of
view.

3Depending on the relevant categories of personal data this means,
that the cloud user needs to control the cloud provider within time
frames of 6 months to 3 years.

One approach is the use of automatically verifiable
privacy metrics for cloud environments, i.e., metrics for
assessing relevant privacy properties based on trustworthy
data, with which the degree of implementation of technical
and organizational measures of the cloud provider can be
controlled continuously.

From a privacy perspective the control of the processing
location is particularly significant because the European
privacy law regulates strict rules in this field: A processing
of personal data by a contract data processor within
the European Economic Area 4 is legally privileged and
usually permitted when based on a written contract and
regular privacy checks. The lawfulness of the processing
of personal data outside the European Economic Area
is dependent on both a statutory permissive rule or the
consent of all relevant data subjects and an adequate
level of privacy through international privacy agreement
or contracts. 5 This distinction is based on the fact that
the privacy level within the European Economic Area
is subject to a high and largely uniform protection, that
results from the implementation of the European Privacy
Directive in the individual states. In contrast, the privacy
level of states outside the European Economic Area varies
dramatically.

Due to the continuous virtualization of IT systems in
globally distributed data centers the clear identification
of the processing location is a major challenge for the
development of automated privacy checks. Therefore, this
paper presents a possible solution for this problem based
on automatically verifiable privacy metrics.

II. THEORETICAL BASIS

A framework specifying terms and techniques is used
for the development of privacy metrics. Its theoretical
basis is rooted in two scientific disciplines. Measurement
theory comprises the measurability of aspects of reality
and is thus the foundation of all measurements. In social
sciences, however, phenomena shall be quantified that
are not measurable directly. This also applies to privacy

4The European Economic Area is a free trade area between the
European Union, Iceland, Liechtenstein and Norway.

5E.g. a data processing in the U.S. is permitted if the data subject
gave his consent to process his data in the U.S. and his personal data
are protected by international privacy agreements such as Safe Harbor.



metrics, as they measure the adherence of a system to ex-
ternal requirements. E.g., they have to determine whether
a virtual machine is located at an admissible location (cf.
section I). As this cannot be measured directly, indirect
hints about the virtual machine’s location have to be
used. From social sciences, the concepts of constructs and
indicators, detailed in section II-B, are used to combine
these indirect hints and approximate the real situation.

A. Measurement Theory

The foundation of all measurements is measurement
theory [2]. It comprises the question whether aspects or
phenomena of reality can be measured at all and thus is
a main part of scientific theory. While statistical methods
are used to infer information from a (usually large) data
basis, measurement theory is concerned with modeling
reality and thus the way data can be gathered in the first
place. Established by Stevens in [3], it was significantly
augmented by Suppes [2].

There are two different schools of thought in mea-
surement theory, called representative and operational
measurement theory, respectively. The former one is also
called classical measurement theory [2]. Measuring ac-
cording to this theory means approximating the structure
of reality by numbers, i.e., creating a numerical represen-
tation of the (empirical) reality. In particular, modeling
the structure of reality means that relations of real-world
objects are projected onto their numerical representations.
Empirical object and measurement method are indepen-
dent of each other. An important task of representative
measurement theory is to show that a chosen method suits
the object to be measured. The operational measurement
theory, opposed to the representative one, states that an
object is defined solely by the measurement method and
thus is one with it. A relation to reality is optional, as it
is not part of the theory [4].

B. Constructs and Indicators

A general problem of representative measurement the-
ory is to determine which mathematical transformations
of real-world objects should be allowed without changing
the relations of different objects. This is especially the
case when dealing with complex phenomena where it
may not be clear what is measured exactly. Additionally,
there may be phenomena where it is known that no direct
measurements are possible. That is especially the case for
privacy metrics, as the limitations of direct measurements
are given by technology and thus are mostly known. Still,
statements on these phenomena may be desirable. Thus,
a method is needed to make statements on complex, not
directly measurable phenomena on measurement-theoretic
foundations.

Social sciences developed the concepts of constructs
and indicators for this. A construct is the phenomenon
on which a statement is to be made, but which is not
measurable directly. For this, indicators are identified
that are semantically related to the construct and are
measurable directly. Several indicators are combined with

statistical methods and thus allow for an approximation of
the construct.

This concept of indirect measurement means that only
the operational measurement method can be used, not
the representative one [5]. This is due to the fact that
the construct is not directly measurable by definition and
thus, does not allow for any measurability considera-
tions. Furthermore, the choice, loading, and combination
method of the indicators—i.e., the operationalization of
the indicators—follows semantic considerations only. Op-
erationalizations can be validated by statistical methods as
well. For this, the influence of each indicator on the result
is examined via test data. For this test data, the result is
known. For example, the processing location of personal
data for which measurements are taken could be known.
Using this test data, the influence of each indicator on the
result can be extrapolated.

C. Related Work

The technology program Trusted Cloud that is funded
by the Federal Ministry for Economic Affairs and Energy
has published a paper [1] that proposes a legal framework
for cloud computing certifications based on a standardized
catalogue of legal requirements. The catalogue should
be uniformed within the European Economic Area. The
certificate should be produced by an independent third
party certifying that the inspection has been carried out
as required by law. The aptitude of the certifying body
should be documented by accreditation. The certifying
body should be liable for erroneous certificates. [1] In [6]
an automated, continuous privacy certification has been
proposed to expand the legal framework suggested by
the technology program Trusted Cloud. The automated,
continuous certification could be based on secure log data
and enables the cloud user to react promptly to potential
privacy incidents.

The development of metrics for continuous and au-
tomated verification of privacy requirements is a new
challenge both theoretically and practically. There are oc-
casional attempts to test privacy metrics for organizational
matters, such as the number and processing time of privacy
requests and infringements but mostly there are propos-
als for information security metrics rather than privacy
metrics, e.g. [7], [8], [9], [10], [11]. Sowa [12] gives an
extensive overview over the definition, development and
use of information security metrics. These definitions are
mainly influenced by the ones of the National Institute for
Standards and Technology (NIST) [10]

To ensure that all personal data are processed only in
lawful locations, the events and operations of the relevant
virtual machines (VM) can be analyzed. The location of
virtual machines can be determined by identifying the
data center. [13] This however requires the participation
of the cloud provider. By using alternative methods the
location of virtual machines can be determined without the
participation of the cloud provider: For example, users of
VMs can determine the virtual coordinates of surrounding
network nodes by measuring the round-trip-time to a



Figure 1. Framework for Privacy Metrics

network node and back (“Round Trip Time”, RTT).[14]
This technique is similar to that in the distance-

bounding protocols which are introduced by Brands and
Chaum [15]. Furthermore, various measurement data can
be combined to so-called fingerprints, in order to analyze
them as a whole and determine the probable location of
the investigated object. For this purpose, statistical tools
and machine learning methods [16] are used, in order
to correlate currently measured fingerprints to reference
data of known locations, without need to semantically
understand the fingerprint information. Such heuristically
detected fingerprints have already been used to identify
neighbored VM locations. [17] [18]

III. A FRAMEWORK FOR PRIVACY METRICS

The goal of the framework presented here is to meet the
specific requirements of privacy metrics for cloud applica-
tions. The method of using metrics within IT companies
has been described in the last section. It can be seen that
metrics in this environment are directly measurable most
of the time, even if the desired information is not. There
is no explicit concept of constructs (cf. section II-B). That
metrics can be used to infer the desired information is
either implicitly stated or is done verbally. An operational-
ization (cf. section II-A), i.e., a choice and loading of
indicators, is usually not done.

On contrast, the framework presented in this chapter
defines metrics such that they approximate constructs, i.e.,
the operationalization of indicators is part of a metric
itself. In the following, the framework is presented. For
this, terms and relations of these terms are mentioned
first. Afterwards, an example of application is given with
the determination of processing locations. Details on the
statistical methods used, i.e., the analytical model, follow.
Lastly, an exemplary calculation method is described.

A. Terms and Relations

The main goal of the framework is to combine the the-
oretical foundation and concepts with the domain-specific
requirements of privacy metrics for cloud applications.
The first step is to define all terms used to construct
metrics as well as the relations of these terms. An overview
is given in figure 1.

All terms used in this framework are taken from the
literature on IT metrics and social sciences, respectively.
The foundation of each measurement is the object of in-
vestigation. This could be a virtual machine on a server in
the cloud. The object of investigation has attributes that are
measured. Quality criteria are used to determine whether a
measurement is useful. These are criteria such as reliability
and validity. The result of a measurement is raw data,
which are stored for further processing by instruments.
Through this processing, they become context-dependent
indicators for a construct that is to be approximated.

This construct, already mentioned in section II-B is
the main part of the framework and describes the actual
desired information. Especially when dealing with privacy
metrics, this information is not directly measurable as it
mostly based on data protection or regulatory laws and
requirements, see section I. An example for this, deter-
mining the processing locations of data, is described in
the next section. Due to the fact that direct measurements
are impossible, the construct has to be approximated by
measurable quantities. Metrics derived from these con-
structs usually report the fulfillment level of the construct’s
requirements as well as a confidence level stating how
reliable the statement on the fulfillment level is. The goal
of a metric is to fulfil the requirement as good as possible.
Target values determine whether that goal is reached.

Metrics are constructed by combining several indi-
cators. The combination method is determined by the
analytical model, detailed in section III-C. Part of an
analytical model are one or more decision criteria, helping
to determine the fulfillment level of the metric.

B. Example of Application: Determination of Processing
Locations

In this framework metrics are designed by combining
top-down and bottom-up approaches. The top-down ap-
proach can be exemplified by starting with the metric
construct of processing location of customer’s data. This
construct results from the data protection requirement
which stipulates that data must be stored and processed
solely in selected countries with an assured high data
protection level. This directly results from the legal reg-
ulations, but does not include the means by which this
question might be answered.

On basis of this construct a metric can be drafted that
quantifies the fulfillment level of the requirement that all
data are processed solely and throughout in permitted
locations. Subsequently, indicators have to be found that
have a semantic relationship to this metric. In contrast
to the top-down approach the definition of indicators
implies that suitable raw information about the object
of investigation, i.e. a specific virtual machine, can be
collected and processed to meaningful location indicators.

• Measure the minimal latency time to nearby servers,
in order to determine the physical location.

• Record the communications paths / hops used while
communicating with reference servers.



• Generate virtual machine environment (VME) finger-
prints (virtual hardware information, driver software
versions, virtual network configuration, local network
environment like gateways, ...).

• Carry out DNS requests that result in different re-
sponses depending on respective locations.

The possible data sources need to be checked accord-
ing to their information content, complexity and cloud
providers acceptance. For example, the acceptance of
cloud providers for scanning the machine environment is
probably low because these methods may be considered
intrusive and risky to data and infrastructure.

The aim of generating meaningful indicators, however,
is accompanied by the aim of establishing a broad refer-
ence database. Generally, a variety of indicators is useful
to verify that a given location is compliant to the privacy
requirements of a cloud user. The more indicators are
available, the more reliable is the result of this calcula-
tion. Meaningful indicators should be considered even if
stronger indicators were available in order to allow cross-
validation.

C. Analytical Model

The essential part of a metric is the analytical model
which describes the operationalization of indicators, i.e.
their combination in the calculation of metric values. The
relevance of each indicator and measurement method for
the approximation of a given construct is expressed as well
as the validity of the resulting metric. The appropriateness
of an analytical model depends both on semantical con-
siderations and on its validation with test data.

As constructs in the context of cloud privacy metrics are
resulting of data privacy laws and regulatory requirements,
the analytical model has to classify the given indicator
values according to their degree of requirement fulfil-
ment. Therefore, static classification methods like decision
trees are used for this purpose. The semantic of these
instruments is simple: for each classification decision the
causal indicators are obvious. Furthermore, decision trees
are constructed by supervised learning [22] so that the
operationalization of indicators can be checked statistically
as described in chapter II-C.

Generally, indicators can be grouped into such that give
direct information on location (group I) and such that
give only fingerprint information on a location (group
II). The greater the consistency of both groups of indi-
cators, the clearer is also the determination of location.
Optimally, if all indicators of group I and group II lead
to identical results, it has a high probability that the
location is correctly determined, and also the assessment
of its compliance to the privacy requirements of a cloud
user. More difficult is the determination whenever the
individual indicators give different results. In this case,
for example, if the fingerprint comparison (group II) is
negative with simultaneous positive result from group I,
the confidence of the classification method used for the
fingerprint comparison can support a decision.

Ideally, the calculation method for the determination of
the data processing location is able to immediately adapt
changes in the information which is used for the location
fingerprinting. Furthermore, it should be implemented
flexible to include new measurement and calculation meth-
ods e.g. new algorithms for the comparison of fingerprints.

IV. SYSTEM ARCHITECTURE

The metric system is used by cloud users that want
to check continuously whether their privacy requirements
are currently met. The architecture for measuring the
processing location should take this into account. Further-
more it should take into account that the cloud provider
and the cloud user may have different interests when it
comes to the measurement of the processing location.
The provider is usually not interested in transferring raw
in-house data about the cloud infrastructure to external
evaluating components and may fear the uncontrolled
spread of information. He also could be interested to filter
out or manipulate critical data. In contrast, the cloud user
wants to receive original unaltered information, but does
not want to share user-specific data with other cloud users
of the same cloud provider.

Figure 2 shows the main components of the system
architecture.

The figure shows on the left the cloud provider’s envi-
ronment that hosts a virtual machine (VM) with customer’s
data and a reference VM of the metric system. These VMs
include cloud-provider-independent VeriMetrix agents that
measure the environmental parameters which are described
in section III and sends them to the central component
(“VeriMetrix Collector”). Generally, reference VMs can be
deployed at known locations to create comparative values.
These are stored in the reference database (shown on the
bottom right). The metrics module of the collector pro-
cesses the measuring data, in order to calculate indicators
and the final metric results. It uses both for classifying
new measuring data: reference data that are measured in
parallel (if available) as well as previously verified data
from the reference database, in order to determine the
probable VM processing location.

One aim of this metric system is the reliable and
sufficient proof of privacy infringements such as unau-
thorized modifications of the processing location. The
ability to configure the appropriate warnings and to get
proofs by viewing the underlying database are therefore
important features of the user interface. The customer may
directly retrieve metric via a web service or may feed the
metric results to existing applications. An auditor may be
commissioned to evaluate measurement data, to add some
data from non-automatic checks of privacy measures and
finally issue evaluation reports to the customer. An admin-
istration interface on the part of the auditor configures and
controls the measuring modules, for example the extend
and frequency of measurements.

The question of whether and how the measuring data
should be protected, not only affects privacy but also
general IT security. This results from the fact that known



Figure 2. Architecture of the VeriMetrix System

locations of VMs can be the base for an attack.6 For
example, if environmental information of specific VMs
become known to hackers, attack VMs may be started in
the same environment and therefore with higher chance
of success . [17] Therefore, the components use Transport
Layer Security (TLS) for data exchange. The collector
component provides a security module (see on the bot-
tom center of figure 2) that transfers the measuring and
reference data in a secured format for later use.

The secured format is described in [6] and provides for
authenticity, integrity and confidentiality of the data ac-
cording to a method defined by Schneier and Kelsey. [19]
This process ensures forward integrity and secure data
storage even in untrusted environments. Therefore, each
new data entry is concatenated to the previous entry on
encryption, hashes and checksums and is then written into
a current measurement file. The security module and the
VeriMetrix keystore mutually agree on basic keys each
time a new data file has to be secured. From these keys and
coded access rights the security module derives one-time
keys to encrypt the current data entry. All keys are deleted
after use. Only the keystore keeps the basic keys and is
able to recalculate on demand the specific encryption keys
for authorized external entities (e.g. to an auditor).

The collector provider may outsource both, the keystore
and the database to a cloud service, even to the tested
cloud provider himself. The keystore may work in form
of an HSM service, which is configurable by the auditor
rather than the cloud provider.7

V. RESPONSE TO UNLAWFUL LOCATIONS

If the result of the metrics reveals abnormalities in
regard to the locations, the cloud user needs to legally
interpret the result and respond to the infringement. For
this, the cloud user should first assess the severity of the
privacy infringement based on the individual case. Criteria
are e.g. the amount of the relevant personal data, the
imminent harm for the data subjects and the circumstances
of the infringement.

6Compare BSI IT-Grundschutz Catalogues, Gefährdung G 4.90.
7Such functionality are for example provided by the AWS CloudHSM

service.

Depending on the result of the severity rating, different
reactions to a detected privacy infringement can be consid-
ered. Considering all criteria of the individual case the first
reaction may be the demand to immediately eliminate the
infringement. The elimination of the infringement needs
to be verified within an appropriate time frame. If there
are substantial privacy violations or if the cloud provider
does not eliminate the infringement immediately, the cloud
user should terminate the contract and contractual bind the
cloud provider to delete his personal data. [20]

If the cloud user uses a cloud storage service he might
have further options to react to the privacy infringement:
Since downloading and deleting previously stored data is
part of the typical functions of this type of cloud services,
the cloud user can actively delete or migrate his data to
either his own data center or the data center of another
cloud provider.8 [20]

VI. OUTLOOK

As mentioned above, the cloud user is obliged to control
the cloud service on a regular basis to ensure that the
personal data are processed in a lawful manner. The sys-
tem of metrics that was introduced in this paper can help
the cloud user to verify the technical and organizational
measures taken by the cloud provider. By verifying these
measures automatically, it can be ensured that they are
implemented by the cloud provider lawfully both in the
(near) past and in the present. Like this the cloud user is
enabled to respond to privacy-related incidents promptly.

Furthermore, such a system of metrics creates the base
for user-friendly marketplaces which enables potential
cloud users to find and compare privacy friendly cloud
services. It is conceivable that these marketplaces also
store

• the privacy requirements of individual sectors in
which special laws require more stringent privacy
requirements for the processing of personal data,

• the privacy properties of cloud services.

8In all three cases it is recommended to contractual bind the cloud
provider to delete backups.



Like this, potential cloud users can easily find out whether
or not a cloud service guarantees to fulfill their sector-
specific requirements. Therefore, such marketplaces can
help building trust in cloud services and thereby contribute
to an increased usage of this technology.
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