“We Know What You Did This Summer”
Android Banking Trojan Exposing its Sins
in The Cloud

By Carlos Castillo and Siegfried Rasthofer

ABSTRACT

Backend-As-A-Service (BaaS) solutions are a very convenient way for developers to connect their apps
easily with a cloud storage. There are different BaaS solutions on the market, offered by various vendors
such as Amazon, Google or Facebook. All of them provide simple APls for common tasks such as
managing database records or files. Adding a few library classes and writing three or four lines of code is
sufficient to integrate cloud storage into the app. While usually such solutions are created for well-
intentioned developers, very recently we have spotted two Android malware families that make use of
BaaS$ solutions as well, Facebook's in this case. Using Facebook's Baa$ solution the malware stores stolen
data, delivers commands executed remotely on the infected device and performs SMS banking fraud.
Malware authors apparently are unaware, however, of how to set up a Baa$S solution securely, which
gave us the possibility to easily obtain access to all data they store. This gave interesting insights into
their C&C (Command and Control) communication protocol and all sensitive data they stole, including
requesting the current balance of credit cards associated with the device, and attempting to perform
payments and fraudulent transfer of funds via SMS messages during June and July 2015. To extract the
necessary data from malicious applications automatically, we developed an automatic exploit generator
that extracts credentials from the app, even if they are obfuscated, and provides access to the
respective Baa$S backend.

INTRODUCTION

Nowadays, most mobile app are connected to the Internet. The connectivity is needed, among other
reasons, to increase the availability of a broad variety of data across different devices and platforms.
Cloud storage is becoming a “must” for mobile application projects; preventing data loss, due to
hardware failure, and enabling users access to their data across a variety of devices are some of the
reasons for this migration to “the cloud”. However, storing and managing all the data remotely can be
costly. Along with the planned app development, additional engineering, testing, and IT resources (with
specific knowledge of databases, server-side languages, app server operational support) are required to
develop and maintain the backend.

As a response to the increasing need of a solution to store and manage data for mobile apps, Internet
companies like Amazon, Google and Facebook started to offer fully-maintained, ready-to-use and easy-
to-implement Backend solutions, formally known as Backend-as-a-service (BaaS), to provide secure data

storage and management for mobile and web applications. Besides data storage, they also offer various
additional features such as push notification mechanisms, user management or integrating social media
into the application. The principle is always the same, the BaaS provider offers pre-defined backend
solutions and Baa$ SDKs to the developer. These SDKs, available for different platforms such as Android,
i0S, JavaScript, etc., are added into the Client’s code (e.g. Android application) and offer the developer
easy-to-use APIs (e.g. two lines of code for writing data into the database)

However, recently it was found that, even when the Baa$ providers offer security features to protect the
data stored in their infrastructure, the default implementation and configuration of those services is
insecure and could allow unauthorized access of the data “securely” stored in the cloud.

Sensitive information exposed by apps insecurely
using Baa$s

In March 2015, Siegfried Rasthofer from Technische Universitdit Darmstadt and Eric Bodden from
Fraunhofer SIT, with assistance from Intel Security, investigated three major BaaS providers (Facebook
Parse, CloudMine and Amazon AWS) and found 56 million sets of unprotected data records’ by scanning
about 2 million apps collected from various sources, such as Google Play. The researchers were able to
access cloud databases from different legitimate apps and found sensitive information like full names, e-
mail addresses, passwords, photos, money transactions and even health records that could be used to
perform identity thief, to send e-mail spam, to distribute malware etc.

Phone Numbers

Baby Photos (111}
mum

i p
Health Data erSOI"Ial
i Data

Figure 1. Sensitive information in Baas’

The access was possible since app developers did not securely protect the user’s data in the backend. In
order to connect to the BaaS database (“cloud”), the developer has to create an ID/key pair in the BaaS
backend, which has to be added into the app’s code. Amazon’s documentation® states that the ID
/“secret-key” pair are used for identifying the application. Usually, identifying a user only requires a

! https://www.sit.fraunhofer.de/en/news-events/latest/press-releases/details/news-article/technische-
universitaet-darmstadt-und-fraunhofer-sit-datenleck-in-apps-bedroht-millionen-von-nutzer/

? https://www.sit.fraunhofer.de/fileadmin/bilder/presse/appdatathreat_pressebild.jpg

3 http://docs.aws.amazon.com/

single ID, where an ID/password pair is used for authentication. However, BaaS providers use an
ID/”secret-key” pair for identifying the application, which is odd and can be the reason why various
developers did not understand that the identification-pair is not an authentication mechanism. Instead,
the developer should also authenticate the user if the application stores user-related information in the
cloud and protect the access to personal data with proper authorization mechanisms like the Access-
Control-Lists (ACLs).

Unfortunately, this was not the case in the majority of the applications that used BaaS mechanisms.
Instead, the researchers even found cases where the developers tried to obfuscate the ID/”secret”-key
pair with various obfuscation techniques. This shows once more that the developers did not understand
that they have to add additional security mechanisms on top of the default application-identification
mechanisms to protect the user’s data.

To determine the dimension of the data leakage, the researchers developed a framework that fully and
automatically scans applications for potential BaaS data leakage (more details about the framework can
be read in their publication®). In the initial research, only legitimate apps were included but they are not
the only ones that manage and store sensitive and private information. Android malware also steals and
leaks private and sensitive information (phone contacts, incoming/outgoing SMS messages, geo-
location, banking information) that could be stored insecurely in BaaS.

Android/OpFake and Facebook Parse

With the help of the researcher’s framework, we scanned 294,817 malware applications in July 2015
and found 16 apps with Facebook’s Parse BaaS$ instances, 9 of them with confirmed access to cloud
database tables (NewTasks, SmsReceiver and TaskManager) which implies that BaaS was also used as a
Command and Control server. In total we found 5 Facebook Parse accounts exposed which were used by
two different, but related, Android Banking Trojan families: Android/OpFake and Android/Marry.

In order to understand how these threats make use of the Baa$ services, and what type of information is
stored in the cloud, we decompiled and statically analyzed one variant of the malware family
Android/OpFake. The app, most-likely distributed via Smishing attacks, pretends to be an “Installer”

(YctaHoBka) for the instant-messaging Russian app Chat for Friends® (YaT ans gpyseit. ApyrBokpyr):

(* App info

M®) Ycravoska
{ * |
version 1.04

Figure 2. Android/OpFake pretending to be the app Chat for Friends

When the app is executed, a fake message is shown to the user saying that the app will be downloaded
and installed on the device:

4 https://www.blackhat.com/docs/eu-15/materials/eu-15-Rasthofer-In-Security-Of-Backend-As-A-Service-wp.pdf
5 . .
https://play.google.com/store/apps/details?id=drug.vokrug

YcTaHoBKa

[loxauTtecb 3aBeplleHus gencteun. [locne 3arpysku

yCTaHOBUTE NMPUJTOXEHWE Ha Balle \/CT{)()H(ITB()

Figure 3. Android/OpFake fake download message

However, instead of downloading the Chat for Friends app, the malware hides the icon on the home
screen and starts a service in the background that subscribe the device to Parse Push notifications, leaks
device information to Parse and traditional Command and Control server and schedules a system alarm.
The information that is stored in the Parse (Facebook’s BaaS) database is mainly intercepted SMS
messages and a Command and Control functionality. The tables are called “NewTasks”, “SMSReceiver”
and “TaskManager” (more details in the next section). Figure 4 shows a workflow of the main
components of the Android/OpFake family that makes use of the BaaS solution.

Boot
Completed

App Executed Start Main Service

Channels:

- D-<deviceld> Locally save Main
- “Everyone” URL (C&C)

- Country (SIM I1SO)

- “welcome”

- IME Subscribe to Parse

- SIM Country Push notifications

- SIM Operator

- Phone Number Execute Async Tasks

- APl Save installation

- Brand data to Parse cloud

- Model

- is_worked (true) - IMEI

- worked_task (true) - SIM Country

- Is_root - Phone Number
- SIM Operator
- Balance

Execute Content Receiver Schedule system
every minute (60 seconds) alarm

Figure 4. Android/OpFake initial behavior

Figures 4 to 7 have the following type of components:

* Green shape: Events in the system that trigger the execution of specific code like a system alarm,
the app opened by the user or an incoming call.

* Blue shape: Actions performed by the malware itself like hiding the icon on the home screen or
executing a specific task in the infected device.

* Yellow shape: Malware functionality related to communication between the malware and the
remote Command and Control server.

* Orange shape: Interaction between the malware and Facebook Parse BaaS.

Figure 4 shows that a service is started in the background when specific events occur. Among other
actions, the service subscribes the device to several channels to receive push notifications with new
tasks to be executed. Interestingly, the malware makes use of Parse push notification mechanism and
did not implement its own mechanism. The tasks can be sent to:

* A specific device using the device identifier (IMEI or android_id).
* Devices from a specific country.

* All devices (Everyone channel).

* Devices subscribed to the channel “welcome”.

Figure 5 shows that the system alarm in Figure 4 will check if there are new commands to be executed
both in the traditional (remote) C&C server (yellow shape) and in the NewTasks table in Facebook Parse
(orange shape).

Execute Query Parse table
%—o Content NewTasks by

Device ID

Receiver

Locally save _imei ‘ No
new C&C LaamleS - balance ‘
server URL L

Execute New

Task If type == task and

imei == Device ID
Intercept I=

null

Open URL
in default IS
browser

Save executed taskin
TaskManager table

Send SMS to
all contacts
with phone
number

Set intercept task ==
<« Yes flag on/off intercept

Send SMS to
number_1 with
content prefix_1

Figure 5. Android/OpFake behavior when the system alarm is fired

The remote (traditional) C&C server commands are the following:

* Send an SMS message to a specific number and with a specific content provided by the remote
server.

* Update the C&C server URL.

* Open a URLin the default browser.

* Send a SMS message to all the contacts in the device with a phone number.

Once the task delivered by the remote server is successfully executed by the infected device, the task ID
is reported back to the C&C server.

In addition to the traditional C&C communication, the malware also used the BaaS data storage
(database) for retrieving new commands. If there are new commands in the NewTasks table (top-right
of Figure 5) the malware first checks the device identifier. Once confirmed, it checks which command
shall be executed next. Figure 6 shows all the commands that can be executed if they are found in the

NewTasks table.

Download

APK from

URL to SD
card

Device
rooted?

Send text
message

Locally save Open URL
new C&C using default el e
server URL web browser

message

Attempt to
install app
using user
interface

Delete
NewTask
Eventually

Remount Set read/write Remount

system ’ N permissions partition
partition as /newmainpack/app/ for the copied again as
read/write APK file read-only

Silently
install the
APK using
pm install

Launch
recently
installed app

Delete
NewTask
Eventually

Figure 6. OpFake behavior when a NewTask record is executed

Once the command delivered via Parse cloud is executed, Figure 5 shows that the task is saved in the
TaskManager table to later update the record with the response of the task (if any).

Figure 5 and 6 shows that Android/OpFake is able to execute any of the following commands present in
the NewTasks table or sent in a Push notification to any of the channels in Figure 4:

* intercept: Sets a flag (on/off) that later will be used to decide if an incoming SMS message
should be leaked to a remote C&C server.

* sms: Send a text message. The content (destination and content) is present in the NewTasks
record.

¢ ussd: Send a USSD message using the URI “tel:”

¢ url: Open the URL provided by the NewTasks record using the default web browser.

* new_server: Locally save the new C&C server URL

* install: Download an APK file from the URL provided by the NewTasks record to the SD Card. If
the device is already rooted, the malware will use the admin privileges to silently install the APK
as a system app using the “pm install” command. If the device is not rooted, the malware will
attempt to trick the user to install the app using the user interface.

Once the task is consumed, the record will be deleted in the NewTasks table in order to avoid the re-
execution of the command. Figure 7 shows that in case of an incoming SMS message, Android/OpFake
will:

¢ Save the message in the Parse SmsReceiver table

¢ Send the message data to the Parse Push channel “T”

¢ If the intercept flag is activated, the malware will leak the message (and the balance if the SMS
comes from a company like MegaFon) to a remote C&C server.

- from

- content Save response
- to: imei : Query TaskManager ame (from:body) in
type: service/ Save message in by task hash T ———
other' SmsReceiver 4

-is_card: if content table

contains cc #
- intype: incoming

Process

SMS mfessage SMS Intercept Isa No
received flag on? response?
message

- imei
;rp;l::ne: Send message data
- message to Parse Push
. 8 channel “T”
- type:
incoming

Extract from

Origin contains message body the
088011 or 00010072 balance and save it
locally

Figure 7. Android/OpFake behavior when an SMS is received

Figure 7 also shows that Android/Opfake checks if the SMS is a response to a SMS previously sent using
the NewTask table. If that is the case, the content will be saved in the “response” field.

ANDROID BANKING TROJAN PARSE TABLES

Based on the static analysis of Android/OpFake, we were able to understand the purpose and the data
stored on each Parse table:

* NewTasks: Stores new commands awaiting to be consumed by each infected device. Once the
command is executed, the record is deleted.

* SmsReceiver: Contains all the intercepted incoming SMS messages received by each infected
device:

o from: origin of the text message (phone number / company name)

intype: incoming/outgoing message

to: device ID of the infected device

is_card: true/false if the message contains a credit card number

type: “service” if the origin is a company (e.g. MegaFon) or “other if is another phone

number (personal message)

O 0 O O

* TaskManager: Stores all the executed tasks plus the response if the incoming SMS message is a
response of a previously executed task (like requesting the balance of a specific credit card —
more details in the next section).

In total, the malware developers used 5 diverent Parse accounts that contained a schema as described
above. 4 of them were used by Android/OpFake and only one, Account D, was used by Android/Marry.
In the case of NewTasks, as we learned from the static analysis, once the task is executed, the
command-execution record is deleted from the table.

Analyzing the creation date of each record in that table (Figure 8), we found that there are almost no
command-execution records until June 25 (except for Account E on June 16), which probably means that
all the commands created at that time were successfully executed by the infected devices (or no new
commands were created). After June 25, we found several records in all accounts, which suggests that
none of them were executed because the records were not deleted. The malware was probably
removed from the victim’s device. Figure 8 also shows that the impact to the victims could have been
greater if all the pending commands since June 25 (and on June 16) were executed by the infected
devices.

Creation Dates of NewTasks Records

16.000
14.000 13.614
12.000
10.000
9.210
8.000 7.917
6.000

4.000

2.000 A
0

=== Account A (OpFake) =====Account B (OpFake) =====Account C (OpFake)

= Account D (Marry) === Account E (OpFake)

Figure 8. Creation dates of NewTasks records

Figure 9 shows that the most popular command that was pending to be executed is “sms” with almost
50,000/60,000 records in Account B and E (Android/OpFake) respectively. Also Figure 9 shows that
Account D (Android/Marry) had few records probably because most of the infected devices were active
consuming tasks at the time of the analysis.

TYPES OF COMMANDS IN NEWTASKS

70.000

sms =intercept =new_server =install
60.000 57.760

48.616
50.000

40.000
30.000 25.723

20.000

9.397
10.000

742 o0 0 4 1 0 11 1 3 0 5 0 35 10 12
0 -

2.555

Account A (OpFake) Account B (OpFake) Account C (OpFake) Account D (Marry) Account E (OpFake)

Figure 9. Type of commands in NewTasks

In addition to thousands of “sms” commands shown in Figure 9, here is some examples of commands
delivered to the victims but probably never executed (or at least never deleted from the NewTask
table):

* new_server:
o hxxp://newwelcome00.ru
o hxxp://newelcome00.ru
* install:
o Android/OpFake delivering Android/Marry:
= hxxp://newwelcome00.ru/appru.apk (marry.adobe.net.threadsync).
= hxxp://newwelcome00.ru/app.apk (marry.adobe.net.nightbuid).
o hxxp://notingen.ru/Player.apk (com.adobe.net)
o hxxp://wexXaabiannxas

On the other hand, in the case of the SmsReceiver table, Figure 10 shows that Account E
(Android/OpFake) was the most active account intercepting and stealing ~60,000 incoming SMS
messages followed by Account B with ~41,000 records.

Number of Intercepted SMS in
SmsReceiver Parse Table

ACCOUNT E (OPFAKE) 60.030
ACCOUNT B (OPFAKE) 41.105

ACCOUNT A (OPFAKE) 40.054

ACCOUNT C (OPFAKE) 28.067

ACCOUNT D (MARRY) 2.000

Figure 10. Number of intercepted SMS messages in SmsReceiver Parse table

Figure 10 also shows that Android/OpFake gathered almost 170,000 SMS messages from infected
devices, most of them personal messages. This demonstrates that victims were not only impacted
financially but their privacy was also invaded by the cybercriminals.

Checking the field is_card in the SmsReceiver table, we were also able to find out how many credit cards
were obtained in incoming SMS messages by account (Figure 11).

Number of Credit Card numbers in
SMS messages stored in
SmsReceiver Parse Table

ACCOUNT D (MARRY) 126
ACCOUNT E (OPFAKE) N 19
ACCOUNT B (OPFAKE) mmmm 10

ACCOUNT A (OPFAKE) mmmm 9o

ACCOUNT C (OPFAKE) ®m 5

Figure 11. Number of credit card numbers stored in SmsReceiver parse table

As for the dates when the SMS messages were intercepted, Figure 12 shows that all the accounts were
most active between June 16 and June 24, intercepting more than 15,000 SMS messages.

Creation Dates of SmsReceiver Records
16.000
14.000
12.000
10.000
8.000
6.000
4.000

2.000

=== Account A (OpFake) =====Account B (OpFake) =====Account C (OpFake)

e Account D (Marry) === Account E (OpFake)

Figure 12. Creation dates of SmsReceiver records

Finally, in the case of the TaskManager table that contains the tasks executed with the corresponding
response (if any), Figure 13 shows that Account D (Android/Marry) was by far the most successful in the
execution of tasks.

TYPES OF COMMANDS IN THE
TASKMANAGER TABLE

Requests =Responses =SMS = Intercept = Install

25.000
20.000
15.000
10.000

5.000
1.123_ 1.113
26

351 32 3 0 20431204 0 0
0 _
Account A (OpFake) Account B (OpFake) Account C (OpFake) Account D (Marry) Account E (OpFake)

Figure 13. Type of commands in TaskManager table

In conjunction with number of commands present in NewTasks in Figure 9, Figure 13 confirms that
Android/Marry was very active at the time that we accessed the exposed accounts and that more than
20,000 commands were successfully executed, most of them SMS tasks primarily for financial fraud.

ANDROID/MARRY

Android/Marry is very similar to Android/OpFake in the sense that both malware families pretend to be
“installers” of legitimate apps but, once they are executed, the main icon of the app (shown in Figure
14) is hidden from the home screen and the code execution starts in the background without user
consent. In the case of Android /Marry, the malware pretends to be “Flash Player”.

v,

Adobe Flash

Figure 14. Android/Marry icon

As soon as the user opens the app, the icon disappears from the home screen and the malware opens
Google Play pointing to the Google Translate app in order to trigger a phishing attack to capture credit
card details as shown in Figure 15.

Enter card details

&

5512345678912345

MM/ YY Ccvwv

[—

Cardholder name

Figure 15. Phishing attack to obtain credit card information

At the same time, several services are started to run in the background as described in Figure 16.

< Running app Q
SERVICES
' Main Service 01:22

Started by app.

This service was started by its app.
Stopping it may cause the app to fail.

STOP

' Notification Service 0S 01:22
Started by app.

This service was started by its app.
Stopping it may cause the app to fail.

STOP

' Notification Service BackUp 01:22
Started by app.

This service was started by its app.
Stopping it may cause the app to fail.

Figure 16. Android/Marry services running in the background
The purpose of the services are:

* Main Service:

o Subscribe the device to Parse push notifications.

o Saves device information (including if the device is rooted) into Parse’s Parselnstallation
table.

o Leak device information like IMEI, IMSI, SIM Serial Number and phone number to a
remote server.

o Check every 30 seconds with the Parse backend (NewTasks table) if there are new tasks
to be executed.

o If credit card details have not been sent yet, check every 5 seconds if the process
com.android.vending (Google Play App) is running to execute the phishing attack and
obtain the financial information.

* Notification Service OS: Every 5 seconds check if there are SMS messages (number and content)
pending to be sent to all the contacts on the device.
* Service BackUp: Upload the following files to a remote server:

o /sdcard/[device_id].sms that contains SMS messages present in the device (date, origin,
content and type which could be incoming or outgoing).

o /sdcard/[device_id].con that contains the contact list (display name, phone number)

o /sdcard/[device_id].apps that contains installed apps on the device (label, package
name)

In addition to the functionality above, like Android/OpFake, Android/Marry is also able to:

* Download and install apps (silently if the device is already rooted)

¢ Update records in TaskManager table with responses from sms commands executed on the
infected device

* Intercept incoming SMS messages and store them into the Parse table SmsReceiver

* Open a URLin the default browse

* Send a USSD message using the URI tel:

* Dynamically update the C&C server URL

FINANCIAL FRAUD IN ACCOUNT D

Because Android/Marry was the malware family that successfully executed the largest number of tasks
(due to the number of records in the TaskManager table), we focused our analysis on the commands
and responses for Account D. Analyzing the destinations of the SMS tasks we uncovered the top 10
targeted companies by Android/Marry (Account D).

Figure 17 shows all companies (banks and mobile operators) that were targeted by the malware family.
One possible reason of being selected to be targeted is the fact that these companies support financial
transactions via SMS messages. For instance, if a normal mobile user wants to get information about all
its different credit card accounts, the user just need to send an SMS message with the content “INFO” to
the number 900 (Sberbank) and the bank will reply with all the requested information. Even concrete
transaction-requests, like payments and transfers, are possible. This makes it very convenient for a
cybercriminal, since they can “silently” transfer money from one account to another.

Figure 17 also shows that the most targeted company is one of the largest banks in Eastern Europe,
Sberbank (C6epbaHk), with 5,350 SMS messages sent to the number 900.

Number of SMS Requests by
Targeted Company

900 (SBERBANK) 5350
10060 (PRIVATBANK) 141
7494 (QIWI) = 70
6996 (MTC) = 53

7878 (BEELINE) = 51
3116 (ROSTELECOMO) * 37
159 (TELE2) * 33
79037672265 (ALFA-BANK) ' 16
100 (MEGAFON) ' 10
5335 (SVYAZNOYBANK) 1

Figure 17. Number of SMS requests by targeted company

We extracted all SMS commands that were used by the cybercriminals that attacked victims with a
Sberbank account. Table 1 provides more details about them.

BALANCE/BALANS/6anaHc BALANS <4-last-digits> VISA1234 Balance: <amount>
INFO/CIPABKA CIPABKA List of connected cards:
VISA1234(ON);

MEPEBOO/PEREVOD/MEP MEPEBO[<4digits_card_origin> To transfer <amount> from card

EBECTW (Transfer) <4digits_card_destination> or VISA1234 the recipient <name> must
<phone_number_destination> send the code <code> to the number
<amount> 900

ZAPROS (Request) ZAPROS <phone_number> Request transfer for <amount> to your
<amount> card VISA4321 has been sent. After

confirmation by the sender <name>
the money will go to your account.

TEL/PLATEZ/PHONE/POP TEL <phone_number> <amount> To pay with card VISA1234 phone

OLNI/PLATI (Pay mobile <company> <phone_number> the

account) amount <amount> send the code
<code> to number 900.

Table 1. SMS Banking Commands

From the information that we have retrieved from the BaaS accounts, we found a common pattern
cybercriminals used to steal money from the victim. Financial fraud usually starts by sending an SMS

message with the keyword “INFO” to the number 900 by retrieving this task from the NewTasks table.
This step is necessary to collect information about all credit card accounts that support banking
transactions via SMS. For instance, if the bank replies with something like VISA1234 (ON), the
cybercriminal knows that the VISA1234 account is enabled for banking transactions via SMS. As a next
step, the cybercriminals proceeded with checks on the balance of each SMS-supported credit card
account. If there is money available, the cybercriminals tried to steal money from the victims account
(e.g. through the “Transfer” command (in Russian) or “TEL/PLATI” command). The malware did this by
adding a new record into the NewTasks table, which will be executed after a while.

However, in the case of actual transactions, the bank will reply with a code that the user should send to
confirm the transaction as an additional security measure. The cybercriminal checks the TaskManager
table to get the code and creates a new record in NewTasks to send the confirmation code to the
number 900. Figure 19 demonstrates an overview of the usage of executed SMS commands. The
BALANCE request is the most executed command followed by INFO.

Number of Requests per Banking
Command

BALANCE 4956
INFO 59
TRANSFER 37
REQUEST 22

PAY TEL 18

Figure 18. Number of requests per banking command

On the other hand, the responses that we found for Account D from Sberbank are shown in Table 2.

Balance VISA1234 Balance: <amount>
Info List of connected cards: VISA1234(ON);
Tel Asked To pay with card VISA1234 phone <company> <phone_number> the

amount <amount> send the code <code> to number 900.

Tel Processed VISA1234 <date> <time> payment for services <amount> <operator>
<phone_number> Balance: <amount>

Transfer Processed MAES1234: Transfer <amount> to the card recipient <name> is processed

Transfer Accepted VISA1234: <time> Amount <amount> from the sender <name> received.
Balance: <amount>

Transfer Asked To transfer <amount> from card VISA1234 the card recipient <name>
should send the code <code> to number 900.

Table 2. SMS Banking Responses
We can group the type of responses by category:

* “Balance”/”INFO”: Contains general information like credit cards linked to the banking account,
which ones are enabled and the current balance for the active ones.

¢ “Asked”: Responses that includes the confirmation code that should be sent by the user to
confirm the transaction.

* “Processed”: Contains confirmed fraudulent transactions.

Number of Sberbank Responses in
TaskManager

BALANCE 607
INFO N 23
TELASKED mmmm 33
TEL PROCESSED mmmmmmm 75
TRANSFER PROCESSED mmmm 36

TRANSFER ACCEPTED mmm 30

TRANSFER ASKED ®m 276

Figure 19. Number of Sberbank responses in TaskManager

Figure 19 shows that Balance is the most popular response with 607 credit card balances successfully
obtained. It is followed by INFO with the list of connected credit cards that belong to 123 banking
accounts. In total, 141 fraudulent transactions (Pay Tel and Transfer) were performed during June and
July 2015.

NUMBER OF USERS AFFECTED BY THE ANDROID BANKING
TROJANS

Because each record had a unique device identifier (IMEI or android_id) we were able to get the number
of victims affected per table and per account. This information is represented in Figure 20.

NUMBER OF AFFECTED USERS PER TABLE
DURING THE TWO-MONTH STUDY
PERIOD

=NewTasks = SmsReceiver TaskManager

9.000 8.225
8.000
7.000
6.000
5.000
4.000
3.000

2.000 1.549

1.000 307

34 10

Account A (OpFake) Account B (OpFake) Account C (OpFake) Account D (Marry) Account E (OpFake)

Figure 20. Number of affected users per table

Figure 20 shows three different facts: First, the number of users that could have been affected is much
higher compared to the number of users that were actually affected. This can be seen if one compares
the “NewTasks”-bar (recap that every successfully executed task will be removed from the “NewTasks”
table) with the “TaskManager” (recap that all executed tasks will be added to the “TaskManager” table)
bar. Secondly, we can see that Android/Marry affected more users performing fraudulent transactions
via SMS messages (1549 TaskManager-tasks vs. 10 NewTask-tasks). Third, Android/OpFake was very
successful in intercepting SMS messages based on the number of affected users in SmsReceiver table. In
total, thousands of users, apparently most of them located in Eastern Europe countries, were affected
by these two Android Banking Trojans.

Responsible Disclosure and Final Thoughts

On August 3, TU Darmstadt/Fraunhofer SIT reported the finding to Facebook and on August 6 Facebook
blocked all exposed Parse accounts used by Android Banking Trojans. The data obtained from those
accounts proves that Android Banking Trojans are a real threat currently affecting thousands of users
and several companies like banks and mobile providers, especially in Easter Europe countries where
financial fraud via SMS messages is actively being done via malicious Android apps.

Also the data shows that financial fraud via SMS messages is actually a real threat currently affecting
hundreds of users. On the other hand, the analysis shows that malware creators are like legitimate
developers in the sense that, as demonstrated by Android/OpFake and Android/Marry, they are focused
on the functionality of the app rather than the security of the data collected or used by the malware.

In the case of non-malware apps, there is not much that the users could do to protect the data managed
by legitimate apps because it is difficult for normal users to know if the app is using BaaS and if it is
being implemented correctly without exposing their sensitive data. In order to reduce the exposure of
personal data in BaaS solutions, one alternative could be the use of well-known apps that have been
validated for security by a trustworthy third party. TU Darmstadt/Fraunhofer SIT were in contact with
Baa$S providers to reach out to the developers in order to inform them about their security issues.
However, in the end it is their choice to fix their apps and follow the security guidelines of each Baa$S
provider.

